The precategory of functors and natural transformations from small to large precategories

Content created by Fredrik Bakke, Daniel Gratzer, Egbert Rijke and Elisabeth Stenholm.

Created on 2023-09-27.
Last modified on 2024-03-11.

module category-theory.precategory-of-functors-from-small-to-large-precategories where
Imports
open import category-theory.functors-from-small-to-large-precategories
open import category-theory.large-precategories
open import category-theory.natural-transformations-functors-from-small-to-large-precategories
open import category-theory.precategories

open import foundation.identity-types
open import foundation.strictly-involutive-identity-types
open import foundation.universe-levels

Idea

Functors from a small precategory C to a large precategory D and natural transformations between them form a large precategory whose identity map and composition structure are inherited pointwise from the codomain precategory. This is called the precategory of functors from small to large precategories.

Definitions

The large precategory of functors and natural transformations from a small to a large precategory

module _
  {l1 l2 : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Precategory l1 l2)
  (D : Large-Precategory α β)
  where

  hom-functor-large-precategory-Small-Large-Precategory :
    {γF γG : Level}
    (F : functor-Small-Large-Precategory C D γF)
    (G : functor-Small-Large-Precategory C D γG) 
    UU (l1  l2  β γF γG)
  hom-functor-large-precategory-Small-Large-Precategory =
    natural-transformation-Small-Large-Precategory C D

  comp-hom-functor-large-precategory-Small-Large-Precategory :
    {γF γG γH : Level}
    {F : functor-Small-Large-Precategory C D γF}
    {G : functor-Small-Large-Precategory C D γG}
    {H : functor-Small-Large-Precategory C D γH} 
    natural-transformation-Small-Large-Precategory C D G H 
    natural-transformation-Small-Large-Precategory C D F G 
    natural-transformation-Small-Large-Precategory C D F H
  comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} =
    comp-natural-transformation-Small-Large-Precategory C D F G H

  associative-comp-hom-functor-large-precategory-Small-Large-Precategory :
    {γF γG γH γI : Level}
    {F : functor-Small-Large-Precategory C D γF}
    {G : functor-Small-Large-Precategory C D γG}
    {H : functor-Small-Large-Precategory C D γH}
    {I : functor-Small-Large-Precategory C D γI}
    (h : natural-transformation-Small-Large-Precategory C D H I)
    (g : natural-transformation-Small-Large-Precategory C D G H)
    (f : natural-transformation-Small-Large-Precategory C D F G) 
    comp-natural-transformation-Small-Large-Precategory C D F G I
      ( comp-natural-transformation-Small-Large-Precategory C D G H I h g)
      ( f) 
    comp-natural-transformation-Small-Large-Precategory C D F H I
      ( h)
      ( comp-natural-transformation-Small-Large-Precategory C D F G H g f)
  associative-comp-hom-functor-large-precategory-Small-Large-Precategory
    {F = F} {G} {H} {I} h g f =
    associative-comp-natural-transformation-Small-Large-Precategory
      C D F G H I f g h

  involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory :
    {γF γG γH γI : Level}
    {F : functor-Small-Large-Precategory C D γF}
    {G : functor-Small-Large-Precategory C D γG}
    {H : functor-Small-Large-Precategory C D γH}
    {I : functor-Small-Large-Precategory C D γI}
    (h : natural-transformation-Small-Large-Precategory C D H I)
    (g : natural-transformation-Small-Large-Precategory C D G H)
    (f : natural-transformation-Small-Large-Precategory C D F G) 
    comp-natural-transformation-Small-Large-Precategory C D F G I
      ( comp-natural-transformation-Small-Large-Precategory C D G H I h g)
      ( f) =ⁱ
    comp-natural-transformation-Small-Large-Precategory C D F H I
      ( h)
      ( comp-natural-transformation-Small-Large-Precategory C D F G H g f)
  involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory
    {F = F} {G} {H} {I} h g f =
    involutive-eq-associative-comp-natural-transformation-Small-Large-Precategory
      C D F G H I f g h

  id-hom-functor-large-precategory-Small-Large-Precategory :
    {γF : Level} {F : functor-Small-Large-Precategory C D γF} 
    natural-transformation-Small-Large-Precategory C D F F
  id-hom-functor-large-precategory-Small-Large-Precategory {F = F} =
    id-natural-transformation-Small-Large-Precategory C D F

  left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory :
    {γF γG : Level}
    {F : functor-Small-Large-Precategory C D γF}
    {G : functor-Small-Large-Precategory C D γG}
    (a : natural-transformation-Small-Large-Precategory C D F G) 
    comp-natural-transformation-Small-Large-Precategory C D F G G
      ( id-natural-transformation-Small-Large-Precategory C D G) a 
    a
  left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory
    { F = F} {G} =
    left-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G

  right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory :
    {γF γG : Level}
    {F : functor-Small-Large-Precategory C D γF}
    {G : functor-Small-Large-Precategory C D γG}
    (a : natural-transformation-Small-Large-Precategory C D F G) 
    comp-natural-transformation-Small-Large-Precategory C D F F G
        a (id-natural-transformation-Small-Large-Precategory C D F) 
    a
  right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory
    { F = F} {G} =
    right-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G

  functor-large-precategory-Small-Large-Precategory :
    Large-Precategory  l  l1  l2  α l  β l l)  l l'  l1  l2  β l l')
  obj-Large-Precategory functor-large-precategory-Small-Large-Precategory =
    functor-Small-Large-Precategory C D
  hom-set-Large-Precategory functor-large-precategory-Small-Large-Precategory =
    natural-transformation-set-Small-Large-Precategory C D
  comp-hom-Large-Precategory
    functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} =
    comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H}
  id-hom-Large-Precategory
    functor-large-precategory-Small-Large-Precategory {X = F} =
    id-hom-functor-large-precategory-Small-Large-Precategory {F = F}
  involutive-eq-associative-comp-hom-Large-Precategory
    functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} {I} =
    involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory
      { F = F} {G} {H} {I}
  left-unit-law-comp-hom-Large-Precategory
    functor-large-precategory-Small-Large-Precategory {X = F} {G} =
    left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory
      { F = F} {G}
  right-unit-law-comp-hom-Large-Precategory
    functor-large-precategory-Small-Large-Precategory {X = F} {G} =
    right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory
      { F = F} {G}

The small precategories of functors and natural transformations from a small to a large precategory

module _
  {l1 l2 : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Precategory l1 l2)
  (D : Large-Precategory α β)
  where

  functor-precategory-Small-Large-Precategory :
    (l : Level)  Precategory (l1  l2  α l  β l l) (l1  l2  β l l)
  functor-precategory-Small-Large-Precategory =
    precategory-Large-Precategory
      ( functor-large-precategory-Small-Large-Precategory C D)

Recent changes