The precategory of functors and natural transformations from small to large precategories
Content created by Fredrik Bakke, Daniel Gratzer, Egbert Rijke and Elisabeth Stenholm.
Created on 2023-09-27.
Last modified on 2024-03-11.
module category-theory.precategory-of-functors-from-small-to-large-precategories where
Imports
open import category-theory.functors-from-small-to-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-functors-from-small-to-large-precategories open import category-theory.precategories open import foundation.identity-types open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
Functors from a
small precategory C
to a
large precategory D
and
natural transformations
between them form a large precategory whose identity map and composition
structure are inherited pointwise from the codomain precategory. This is called
the precategory of functors from small to large precategories.
Definitions
The large precategory of functors and natural transformations from a small to a large precategory
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) → UU (l1 ⊔ l2 ⊔ β γF γG) hom-functor-large-precategory-Small-Large-Precategory = natural-transformation-Small-Large-Precategory C D comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} → natural-transformation-Small-Large-Precategory C D G H → natural-transformation-Small-Large-Precategory C D F G → natural-transformation-Small-Large-Precategory C D F H comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} = comp-natural-transformation-Small-Large-Precategory C D F G H associative-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} {I : functor-Small-Large-Precategory C D γI} (h : natural-transformation-Small-Large-Precategory C D H I) (g : natural-transformation-Small-Large-Precategory C D G H) (f : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I h g) ( f) = comp-natural-transformation-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-Small-Large-Precategory C D F G H g f) associative-comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = associative-comp-natural-transformation-Small-Large-Precategory C D F G H I f g h involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} {I : functor-Small-Large-Precategory C D γI} (h : natural-transformation-Small-Large-Precategory C D H I) (g : natural-transformation-Small-Large-Precategory C D G H) (f : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I h g) ( f) =ⁱ comp-natural-transformation-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-Small-Large-Precategory C D F G H g f) involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = involutive-eq-associative-comp-natural-transformation-Small-Large-Precategory C D F G H I f g h id-hom-functor-large-precategory-Small-Large-Precategory : {γF : Level} {F : functor-Small-Large-Precategory C D γF} → natural-transformation-Small-Large-Precategory C D F F id-hom-functor-large-precategory-Small-Large-Precategory {F = F} = id-natural-transformation-Small-Large-Precategory C D F left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G G ( id-natural-transformation-Small-Large-Precategory C D G) a = a left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} = left-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F F G a (id-natural-transformation-Small-Large-Precategory C D F) = a right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} = right-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G functor-large-precategory-Small-Large-Precategory : Large-Precategory (λ l → l1 ⊔ l2 ⊔ α l ⊔ β l l) (λ l l' → l1 ⊔ l2 ⊔ β l l') obj-Large-Precategory functor-large-precategory-Small-Large-Precategory = functor-Small-Large-Precategory C D hom-set-Large-Precategory functor-large-precategory-Small-Large-Precategory = natural-transformation-set-Small-Large-Precategory C D comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} = comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} id-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} = id-hom-functor-large-precategory-Small-Large-Precategory {F = F} involutive-eq-associative-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} {I} = involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} {H} {I} left-unit-law-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} = left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} right-unit-law-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} = right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G}
The small precategories of functors and natural transformations from a small to a large precategory
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where functor-precategory-Small-Large-Precategory : (l : Level) → Precategory (l1 ⊔ l2 ⊔ α l ⊔ β l l) (l1 ⊔ l2 ⊔ β l l) functor-precategory-Small-Large-Precategory = precategory-Large-Precategory ( functor-large-precategory-Small-Large-Precategory C D)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).