Discrete dependent reflexive globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.discrete-dependent-reflexive-globular-types where
Imports
open import foundation.universe-levels open import globular-types.dependent-reflexive-globular-types open import globular-types.discrete-reflexive-globular-types open import globular-types.points-reflexive-globular-types open import globular-types.reflexive-globular-types
Idea
A
dependent reflexive globular type
H
over a reflexive globular type
G
is said to be
discrete¶
if the reflexive globular type
ev-point H x
is discrete for every
point of G
.
Definitions
The predicate of being a discrete dependent reflexive globular type
module _ {l1 l2 l3 l4 : Level} {G : Reflexive-Globular-Type l1 l2} (H : Dependent-Reflexive-Globular-Type l3 l4 G) where is-discrete-Dependent-Reflexive-Globular-Type : UU (l1 ⊔ l3 ⊔ l4) is-discrete-Dependent-Reflexive-Globular-Type = (x : point-Reflexive-Globular-Type G) → is-discrete-Reflexive-Globular-Type ( ev-point-Dependent-Reflexive-Globular-Type H x)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).