Posets
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, Victor Blanchi, fernabnor and louismntnu.
Created on 2022-01-05.
Last modified on 2024-11-20.
module order-theory.posets where
Imports
open import category-theory.categories open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.injective-maps open import foundation.logical-equivalences open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.preorders
Idea
A poset is a set equipped with a reflexive, antisymmetric, transitive relation that takes values in propositions.
Definition
is-antisymmetric-leq-Preorder : {l1 l2 : Level} (P : Preorder l1 l2) → UU (l1 ⊔ l2) is-antisymmetric-leq-Preorder P = is-antisymmetric (leq-Preorder P) Poset : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Poset l1 l2 = Σ (Preorder l1 l2) (is-antisymmetric-leq-Preorder) module _ {l1 l2 : Level} (X : Poset l1 l2) where preorder-Poset : Preorder l1 l2 preorder-Poset = pr1 X type-Poset : UU l1 type-Poset = type-Preorder preorder-Poset leq-prop-Poset : (x y : type-Poset) → Prop l2 leq-prop-Poset = leq-prop-Preorder preorder-Poset leq-Poset : (x y : type-Poset) → UU l2 leq-Poset = leq-Preorder preorder-Poset is-prop-leq-Poset : (x y : type-Poset) → is-prop (leq-Poset x y) is-prop-leq-Poset = is-prop-leq-Preorder preorder-Poset concatenate-eq-leq-Poset' : {x y z : type-Poset} → x = y → leq-Poset x z → leq-Poset y z concatenate-eq-leq-Poset' = concatenate-eq-leq-Preorder' preorder-Poset concatenate-eq-leq-Poset : {x y z : type-Poset} → x = y → leq-Poset y z → leq-Poset x z concatenate-eq-leq-Poset = concatenate-eq-leq-Preorder preorder-Poset concatenate-leq-eq-Poset : {x y z : type-Poset} → leq-Poset x y → y = z → leq-Poset x z concatenate-leq-eq-Poset = concatenate-leq-eq-Preorder preorder-Poset concatenate-eq-leq-eq-Poset : {x y z w : type-Poset} → x = y → leq-Poset y z → z = w → leq-Poset x w concatenate-eq-leq-eq-Poset = concatenate-eq-leq-eq-Preorder preorder-Poset concatenate-eq-leq-eq-Poset' : {x y z w : type-Poset} → x = y → leq-Poset x z → z = w → leq-Poset y w concatenate-eq-leq-eq-Poset' = concatenate-eq-leq-eq-Preorder' preorder-Poset refl-leq-Poset : is-reflexive leq-Poset refl-leq-Poset = refl-leq-Preorder preorder-Poset transitive-leq-Poset : is-transitive leq-Poset transitive-leq-Poset = transitive-leq-Preorder preorder-Poset le-prop-Poset : (x y : type-Poset) → Prop (l1 ⊔ l2) le-prop-Poset = le-prop-Preorder preorder-Poset le-Poset : (x y : type-Poset) → UU (l1 ⊔ l2) le-Poset = le-Preorder preorder-Poset is-prop-le-Poset : (x y : type-Poset) → is-prop (le-Poset x y) is-prop-le-Poset = is-prop-le-Preorder preorder-Poset antisymmetric-leq-Poset : is-antisymmetric leq-Poset antisymmetric-leq-Poset = pr2 X is-set-type-Poset : is-set type-Poset is-set-type-Poset = is-set-prop-in-id ( λ x y → leq-Poset x y × leq-Poset y x) ( λ x y → is-prop-product (is-prop-leq-Poset x y) (is-prop-leq-Poset y x)) ( λ x → refl-leq-Poset x , refl-leq-Poset x) ( λ x y (H , K) → antisymmetric-leq-Poset x y H K) set-Poset : Set l1 pr1 set-Poset = type-Poset pr2 set-Poset = is-set-type-Poset
Reasoning with inequalities in posets
Inequalities in preorders can be constructed by equational reasoning as follows:
calculate-in-Poset X
chain-of-inequalities
x ≤ y
by ineq-1
in-Poset X
≤ z
by ineq-2
in-Poset X
≤ v
by ineq-3
in-Poset X
Note, however, that in our setup of equational reasoning with inequalities it is not possible to mix inequalities with equalities or strict inequalities.
infixl 1 calculate-in-Poset_chain-of-inequalities_ infixl 0 step-calculate-in-Poset calculate-in-Poset_chain-of-inequalities_ : {l1 l2 : Level} (X : Poset l1 l2) (x : type-Poset X) → leq-Poset X x x calculate-in-Poset_chain-of-inequalities_ = refl-leq-Poset step-calculate-in-Poset : {l1 l2 : Level} (X : Poset l1 l2) {x y : type-Poset X} → leq-Poset X x y → (z : type-Poset X) → leq-Poset X y z → leq-Poset X x z step-calculate-in-Poset X {x} {y} u z v = transitive-leq-Poset X x y z v u syntax step-calculate-in-Poset X u z v = u ≤ z by v in-Poset X
Properties
Posets are categories whose underlying hom-sets are propositions
module _ {l1 l2 : Level} (X : Poset l1 l2) where precategory-Poset : Precategory l1 l2 precategory-Poset = precategory-Preorder (preorder-Poset X) is-category-precategory-Poset : is-category-Precategory precategory-Poset is-category-precategory-Poset x y = is-equiv-has-converse-is-prop ( is-set-type-Poset X x y) ( is-prop-iso-is-prop-hom-Precategory precategory-Poset ( is-prop-leq-Poset X x y)) ( λ f → antisymmetric-leq-Poset X x y ( hom-iso-Precategory precategory-Poset f) ( hom-inv-iso-Precategory precategory-Poset f)) category-Poset : Category l1 l2 pr1 category-Poset = precategory-Poset pr2 category-Poset = is-category-precategory-Poset module _ {l1 l2 : Level} (C : Category l1 l2) (is-prop-hom-C : (x y : obj-Category C) → is-prop (hom-Category C x y)) where preorder-is-prop-hom-Category : Preorder l1 l2 preorder-is-prop-hom-Category = preorder-is-prop-hom-Precategory (precategory-Category C) (is-prop-hom-C) poset-is-prop-hom-Category : Poset l1 l2 pr1 poset-is-prop-hom-Category = preorder-is-prop-hom-Category pr2 poset-is-prop-hom-Category x y f g = map-inv-is-equiv ( is-category-Category C x y) ( iso-is-prop-hom-Precategory ( precategory-Category C) is-prop-hom-C f g)
It remains to show that these constructions form inverses to eachother.
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-10-16. Fredrik Bakke. The simplex precategory (#845).