Localizations at global subuniverses
Content created by Fredrik Bakke.
Created on 2025-02-03.
Last modified on 2025-02-03.
module orthogonal-factorization-systems.localizations-at-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.cones-over-cospan-diagrams open import foundation.constant-maps open import foundation.contractible-types open import foundation.cospan-diagrams open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.equivalences-arrows open import foundation.extensions-types open import foundation.extensions-types-global-subuniverses open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.global-subuniverses open import foundation.homotopies open import foundation.identity-types open import foundation.postcomposition-functions open import foundation.precomposition-dependent-functions open import foundation.precomposition-functions open import foundation.pullback-cones open import foundation.pullbacks open import foundation.sequential-limits open import foundation.singleton-induction open import foundation.subuniverses open import foundation.type-theoretic-principle-of-choice open import foundation.unit-type open import foundation.universal-property-dependent-pair-types open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import orthogonal-factorization-systems.orthogonal-maps open import orthogonal-factorization-systems.pullback-hom open import orthogonal-factorization-systems.types-local-at-maps open import orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses
Idea
Let 𝒫
be a global subuniverse. Given a
type X
, its
localization¶
at 𝒫
, or 𝒫
-localization, is a type LX
in 𝒫
and a map η : X → LX
such that every type in 𝒫
is
η
-local. I.e., for
every Z
in 𝒫
, the precomposition map
- ∘ η : (LX → Z) → (X → Z)
is an equivalence. This is referred to as the universal property of localizations.
Definitions
The type of localizations of a type at a global subuniverse
record localization-global-subuniverse {α : Level → Level} (𝒫 : global-subuniverse α) {l1 : Level} (l2 : Level) (X : UU l1) : UUω where constructor make-localization-global-subuniverse field reflection-localization-global-subuniverse : extension-type-global-subuniverse 𝒫 l2 X extension-type-localization-global-subuniverse : extension-type l2 X extension-type-localization-global-subuniverse = extension-type-extension-type-global-subuniverse 𝒫 reflection-localization-global-subuniverse type-global-subuniverse-localization-global-subuniverse : type-global-subuniverse 𝒫 l2 type-global-subuniverse-localization-global-subuniverse = type-global-subuniverse-extension-type-global-subuniverse 𝒫 reflection-localization-global-subuniverse type-localization-global-subuniverse : UU l2 type-localization-global-subuniverse = type-extension-type-global-subuniverse 𝒫 reflection-localization-global-subuniverse is-in-global-subuniverse-type-localization-global-subuniverse : is-in-global-subuniverse 𝒫 type-localization-global-subuniverse is-in-global-subuniverse-type-localization-global-subuniverse = is-in-global-subuniverse-type-extension-type-global-subuniverse 𝒫 reflection-localization-global-subuniverse unit-localization-global-subuniverse : X → type-localization-global-subuniverse unit-localization-global-subuniverse = inclusion-extension-type-global-subuniverse 𝒫 reflection-localization-global-subuniverse field up-localization-global-subuniverse : universal-property-localization-global-subuniverse 𝒫 X reflection-localization-global-subuniverse open localization-global-subuniverse public
Properties
Localizations are essentially unique
This is Proposition 5.1.2 in [Rij19].
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {X : UU l1} (LX : localization-global-subuniverse 𝒫 l2 X) (LX' : localization-global-subuniverse 𝒫 l3 X) where essentially-unique-type-localization-global-subuniverse : type-localization-global-subuniverse LX ≃ type-localization-global-subuniverse LX' essentially-unique-type-localization-global-subuniverse = essentially-unique-type-universal-property-localization-global-subuniverse 𝒫 ( reflection-localization-global-subuniverse LX) ( reflection-localization-global-subuniverse LX') ( up-localization-global-subuniverse LX) ( up-localization-global-subuniverse LX') essentially-unique-reflection-localization-global-subuniverse : equiv-extension-type-global-subuniverse 𝒫 ( reflection-localization-global-subuniverse LX) ( reflection-localization-global-subuniverse LX') essentially-unique-reflection-localization-global-subuniverse = essentially-unique-extension-type-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LX) ( reflection-localization-global-subuniverse LX') ( up-localization-global-subuniverse LX) ( up-localization-global-subuniverse LX')
Localizations are unique
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {X : UU l1} (LX LX' : localization-global-subuniverse 𝒫 l2 X) where unique-type-localization-global-subuniverse : type-localization-global-subuniverse LX = type-localization-global-subuniverse LX' unique-type-localization-global-subuniverse = unique-type-universal-property-localization-global-subuniverse 𝒫 ( reflection-localization-global-subuniverse LX) ( reflection-localization-global-subuniverse LX') ( up-localization-global-subuniverse LX) ( up-localization-global-subuniverse LX') unique-reflection-localization-global-subuniverse : reflection-localization-global-subuniverse LX = reflection-localization-global-subuniverse LX' unique-reflection-localization-global-subuniverse = unique-extension-type-universal-property-localization-global-subuniverse 𝒫 ( reflection-localization-global-subuniverse LX) ( reflection-localization-global-subuniverse LX') ( up-localization-global-subuniverse LX) ( up-localization-global-subuniverse LX')
If the unit type has a 𝒫
-localization then it is in 𝒫
This is Corollary 5.1.4 of [Rij19].
module _ {α : Level → Level} (𝒫 : global-subuniverse α) where is-equiv-unit-has-localization-global-subuniverse-unit : {l : Level} (L : localization-global-subuniverse 𝒫 l unit) → is-equiv (unit-localization-global-subuniverse L) is-equiv-unit-has-localization-global-subuniverse-unit L = is-equiv-unit-retraction-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse L) ( up-localization-global-subuniverse L) ( retraction-point (unit-localization-global-subuniverse L star)) is-in-global-subuniverse-has-localization-global-subuniverse-unit : {l : Level} (L : localization-global-subuniverse 𝒫 l unit) → is-in-global-subuniverse 𝒫 unit is-in-global-subuniverse-has-localization-global-subuniverse-unit L = is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse L) ( up-localization-global-subuniverse L) ( is-equiv-unit-has-localization-global-subuniverse-unit L)
If a contractible type has a 𝒫
-localization then it is in 𝒫
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {A : UU l1} (H : is-contr A) (LA : localization-global-subuniverse 𝒫 l2 A) where is-equiv-unit-has-localization-global-subuniverse-is-contr : is-equiv (unit-localization-global-subuniverse LA) is-equiv-unit-has-localization-global-subuniverse-is-contr = is-equiv-unit-retraction-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LA) ( up-localization-global-subuniverse LA) ( const (type-localization-global-subuniverse LA) (center H) , contraction H) is-in-global-subuniverse-has-localization-global-subuniverse-is-contr : is-in-global-subuniverse 𝒫 A is-in-global-subuniverse-has-localization-global-subuniverse-is-contr = is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LA) ( up-localization-global-subuniverse LA) ( is-equiv-unit-has-localization-global-subuniverse-is-contr)
Dependent sums of dependent types over localizations
Given a localization η : X → LX
with respect to a global subuniverse 𝒫
and a
dependent type P
over LX
, then if the dependent sum Σ (l : LX), P l
is in
𝒫
the dependent type P
is η
-local.
This is stated as Proposition 5.1.5 in [Rij19] and as Proposition 2.8 in [CORS20].
Proof. Consider the following diagram.
- ∘ η
(Π (l : LX), P l) --------> (Π (x : X), P (η x))
| |
| |
| |
| |
∨ - ∘ η ∨
(LX → Σ (l : LX), P l) ------> (X → Σ (l : LX), P l)
| |
| |
pr1 ∘ - | | pr1 ∘ -
| |
∨ - ∘ η ∨
id ∈ (LX → LX) -------------------> (X → LX)
The bottom horizontal map is an equivalence by the universal property of the localization and the top vertical maps are fiber inclusions. Therefore, the middle horizontal map is an equivalence and the bottom square is a pullback if and only if the the top horizontal map is an equivalence.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {X : UU l1} (LX : localization-global-subuniverse 𝒫 l2 X) {P : type-localization-global-subuniverse LX → UU l3} where is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse : is-in-global-subuniverse 𝒫 (Σ (type-localization-global-subuniverse LX) P) → is-local-dependent-type (unit-localization-global-subuniverse LX) P is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse H = is-equiv-target-is-equiv-source-equiv-arrow _ _ ( equiv-Π-equiv-family (equiv-fiber-pr1 P) , equiv-Π-equiv-family ( equiv-fiber-pr1 P ∘ unit-localization-global-subuniverse LX) , refl-htpy) ( is-orthogonal-fiber-condition-right-map-is-orthogonal-pullback-condition ( unit-localization-global-subuniverse LX) ( pr1 {B = P}) ( is-pullback-is-equiv-horizontal-maps _ _ ( cone-pullback-hom (unit-localization-global-subuniverse LX) pr1) ( up-localization-global-subuniverse LX ( type-global-subuniverse-localization-global-subuniverse LX)) ( up-localization-global-subuniverse LX ( Σ (type-localization-global-subuniverse LX) P , H))) ( id))
This formalized proof can be made more elegant by formalizing the concept of type families that are orthogonal to maps.
Alternative proof. We have an equivalence of arrows
precomp η (Σ LX P)
(B → Σ LX P) ------------------------------> (A → Σ LX P)
| |
~ | | ~
∨ ∨
Σ (h : B → LX) ((y : B) → P (h y)) --------> Σ (h : A → LX) ((x : A) → P (h x)).
map-Σ _ (precomp η LX) (λ h → precomp-Π η (P ∘ h))
and the functoriality of dependent pair types decomposes as a composite
map-Σ _ (precomp η LX) (λ h → precomp-Π η (P ∘ h)) ~
map-Σ-map-base _ (precomp η LX) ∘ tot (λ h → precomp-Π η (P ∘ h)).
Since LX
is 𝒫
-local the map map-Σ-map-base _ (precomp η LX)
is an
equivalence. Therefore, precomp η (Σ LX P)
is an equivalence if and only if
λ h → precomp-Π η (P ∘ h)
is a fiberwise equivalence. In particular, if
precomp η (Σ LX P)
is an equivalence then precomp-Π η P
is an equivalence.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {X : UU l1} (LX : localization-global-subuniverse 𝒫 l2 X) {P : type-localization-global-subuniverse LX → UU l3} where is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse' : is-in-global-subuniverse 𝒫 (Σ (type-localization-global-subuniverse LX) P) → is-local-dependent-type (unit-localization-global-subuniverse LX) P is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse' H = is-fiberwise-equiv-is-equiv-map-Σ ( λ h → (x : X) → P (h x)) ( precomp ( unit-localization-global-subuniverse LX) ( type-localization-global-subuniverse LX)) ( λ h → precomp-Π (unit-localization-global-subuniverse LX) (P ∘ h)) ( up-localization-global-subuniverse LX ( type-global-subuniverse-localization-global-subuniverse LX)) ( is-equiv-target-is-equiv-source-equiv-arrow ( precomp ( unit-localization-global-subuniverse LX) ( Σ (type-localization-global-subuniverse LX) P)) ( map-Σ ( λ h → (x : X) → P (h x)) ( precomp ( unit-localization-global-subuniverse LX) ( type-localization-global-subuniverse LX)) ( λ h → precomp-Π (unit-localization-global-subuniverse LX) (P ∘ h))) ( distributive-Π-Σ , distributive-Π-Σ , coherence-precomp-Σ) ( up-localization-global-subuniverse LX ( Σ (type-localization-global-subuniverse LX) P , H))) ( id)
Dependent products of 𝒫
-types that have a 𝒫
-localization are 𝒫
-types
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (K : (x : A) → is-in-global-subuniverse 𝒫 (B x)) (LE : localization-global-subuniverse 𝒫 l3 ((x : A) → B x)) where is-in-global-subuniverse-Π-localization-global-subuniverse : is-in-global-subuniverse 𝒫 ((x : A) → B x) is-in-global-subuniverse-Π-localization-global-subuniverse = is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LE) ( up-localization-global-subuniverse LE) ( distributive-Π-is-local ( unit-localization-global-subuniverse LE) ( B) ( λ x → up-localization-global-subuniverse LE (B x , K x)))
Exponentials of 𝒫
-types that have a 𝒫
-localization are 𝒫
-types
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (K : is-in-global-subuniverse 𝒫 B) (LE : localization-global-subuniverse 𝒫 l3 (A → B)) where is-in-global-subuniverse-exponential-localization-global-subuniverse : is-in-global-subuniverse 𝒫 (A → B) is-in-global-subuniverse-exponential-localization-global-subuniverse = is-in-global-subuniverse-Π-localization-global-subuniverse 𝒫 (λ _ → K) LE
Localizations of types of homotopies
Assume given a 𝒫
-localization η : X → LX
and two maps f g : LX → Y
where
Y ∈ 𝒫
, then the right whiskering map - ·r η : (g ~ h) → (g ∘ η ~ h ∘ η)
is
an equivalence.
This is Lemma 5.1.18 in [Rij19].
Proof. We have an equivalence of maps
ap (- ∘ η)
g = h -----------> g ∘ η = h ∘ η
| |
htpy-eq | ~ ~ | htpy-eq
∨ ∨
g ~ h ------------> g ∘ η ~ h ∘ η
- ·r η
and the map - ∘ η
is an embedding since Y
is η
-local by the universal
property, hence the top horizontal map is an equivalence and so the bottom map
is as well.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {X : UU l1} {Y : UU l3} (LX : localization-global-subuniverse 𝒫 l2 X) (H : is-in-global-subuniverse 𝒫 Y) where is-equiv-right-whisker-unit-localization-global-subuniverse : {g h : type-localization-global-subuniverse LX → Y} → is-equiv ( λ H → right-whisker-comp {g = g} {h} H ( unit-localization-global-subuniverse LX)) is-equiv-right-whisker-unit-localization-global-subuniverse {g} {h} = is-equiv-target-is-equiv-source-equiv-arrow ( ap (precomp (unit-localization-global-subuniverse LX) Y)) ( _·r (unit-localization-global-subuniverse LX)) ( equiv-funext , equiv-funext , coherence-htpy-eq-ap-precomp' (unit-localization-global-subuniverse LX)) (is-emb-is-equiv (up-localization-global-subuniverse LX (Y , H)) g h)
A type is a 𝒫
-type if it has a 𝒫
-localization and is a pullback of types in 𝒫
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 l5 : Level} {𝒮 : cospan-diagram l1 l2 l3} (c : pullback-cone 𝒮 l4) (LC : localization-global-subuniverse 𝒫 l5 (domain-pullback-cone 𝒮 c)) where map-compute-cone-pullback-localization-global-subuniverse : cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( type-localization-global-subuniverse LC) → cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( domain-pullback-cone 𝒮 c) map-compute-cone-pullback-localization-global-subuniverse c' = cone-map ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( c') ( unit-localization-global-subuniverse LC) is-equiv-map-compute-cone-pullback-localization-global-subuniverse : is-in-global-subuniverse 𝒫 (cospanning-type-cospan-diagram 𝒮) → is-in-global-subuniverse 𝒫 (left-type-cospan-diagram 𝒮) → is-in-global-subuniverse 𝒫 (right-type-cospan-diagram 𝒮) → is-equiv map-compute-cone-pullback-localization-global-subuniverse is-equiv-map-compute-cone-pullback-localization-global-subuniverse x a b = is-equiv-map-Σ _ ( up-localization-global-subuniverse LC ( left-type-cospan-diagram 𝒮 , a)) ( λ _ → is-equiv-map-Σ _ ( up-localization-global-subuniverse LC ( right-type-cospan-diagram 𝒮 , b)) ( λ _ → is-equiv-right-whisker-unit-localization-global-subuniverse 𝒫 LC x)) is-in-global-subuniverse-pullback-localization-global-subuniverse : is-in-global-subuniverse 𝒫 (cospanning-type-cospan-diagram 𝒮) → is-in-global-subuniverse 𝒫 (left-type-cospan-diagram 𝒮) → is-in-global-subuniverse 𝒫 (right-type-cospan-diagram 𝒮) → is-in-global-subuniverse 𝒫 (domain-pullback-cone 𝒮 c) is-in-global-subuniverse-pullback-localization-global-subuniverse x a b = is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse ( 𝒫) ( reflection-localization-global-subuniverse LC) ( up-localization-global-subuniverse LC) ( is-equiv-source-is-equiv-target-equiv-arrow ( precomp ( unit-localization-global-subuniverse LC) ( domain-pullback-cone 𝒮 c)) ( map-compute-cone-pullback-localization-global-subuniverse) ( ( ( cone-map ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone 𝒮 c)) , ( up-pullback-cone 𝒮 c (type-localization-global-subuniverse LC))) , ( ( cone-map ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone 𝒮 c)) , ( up-pullback-cone 𝒮 c ( domain-pullback-cone 𝒮 c))) , ( refl-htpy)) ( is-equiv-map-compute-cone-pullback-localization-global-subuniverse ( x) ( a) ( b)))
Cartesian products of 𝒫
-types that have a 𝒫
-localization are 𝒫
-types
Let 𝒫
be a global subuniverse such that unit
is a 𝒫
-type. Then if A
and
B
are 𝒫
-types and their cartesian product A × B
has a 𝒫
-localization,
then A × B
is a 𝒫
-type.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) (U : is-in-global-subuniverse 𝒫 unit) {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (H : is-in-global-subuniverse 𝒫 A) (K : is-in-global-subuniverse 𝒫 B) (LI : localization-global-subuniverse 𝒫 l3 (A × B)) where is-in-global-subuniverse-cartesian-product-localization-global-subuniverse : is-in-global-subuniverse 𝒫 (A × B) is-in-global-subuniverse-cartesian-product-localization-global-subuniverse = is-in-global-subuniverse-pullback-localization-global-subuniverse 𝒫 ( pullback-cone-cartesian-product) ( LI) ( U) ( H) ( K)
Identity types of 𝒫
-types that have a 𝒫
-localization are 𝒫
-types
Let 𝒫
be a global subuniverse such that unit
is a 𝒫
-type. Now assume given
a 𝒫
-type A
with elements x
and y
such that x = y
has a
𝒫
-localization, then x = y
is a 𝒫
-type.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) (U : is-in-global-subuniverse 𝒫 unit) {l1 l2 : Level} {A : UU l1} {x y : A} (H : is-in-global-subuniverse 𝒫 A) (LI : localization-global-subuniverse 𝒫 l2 (x = y)) where is-in-global-subuniverse-Id-localization-global-subuniverse : is-in-global-subuniverse 𝒫 (x = y) is-in-global-subuniverse-Id-localization-global-subuniverse = is-in-global-subuniverse-pullback-localization-global-subuniverse 𝒫 ( pullback-cone-Id x y) ( LI) ( H) ( U) ( U)
Sequential limits of 𝒫
-types that have a 𝒫
-localization are 𝒫
-types
This remains to be formalized.
Cartesian products of 𝒫
-localizations
Let 𝒫
be a global subuniverse, then if η_A : A → LA
and η_B : B → LB
are
𝒫
-localizations such that LA × LB
is a 𝒫
-type and 𝒫
is closed under
exponentiating by LB
, then η_A × η_B : A × B → LA × LB
is a 𝒫
-localization
as well.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (LA : localization-global-subuniverse 𝒫 l3 A) (LB : localization-global-subuniverse 𝒫 l4 B) (exp-LB : {l : Level} (Z : type-global-subuniverse 𝒫 l) → is-in-global-subuniverse 𝒫 ( type-localization-global-subuniverse LB → inclusion-global-subuniverse 𝒫 Z)) (H : is-in-global-subuniverse 𝒫 ( type-localization-global-subuniverse LA × type-localization-global-subuniverse LB)) where type-cartesian-product-localization-global-subuniverse : UU (l3 ⊔ l4) type-cartesian-product-localization-global-subuniverse = type-localization-global-subuniverse LA × type-localization-global-subuniverse LB unit-cartesian-product-localization-global-subuniverse : A × B → type-cartesian-product-localization-global-subuniverse unit-cartesian-product-localization-global-subuniverse = map-product ( unit-localization-global-subuniverse LA) ( unit-localization-global-subuniverse LB) reflection-cartesian-product-localization-global-subuniverse : extension-type-global-subuniverse 𝒫 (l3 ⊔ l4) (A × B) reflection-cartesian-product-localization-global-subuniverse = ( type-cartesian-product-localization-global-subuniverse , H) , ( unit-cartesian-product-localization-global-subuniverse) up-cartesian-product-localization-global-subuniverse : universal-property-localization-global-subuniverse 𝒫 (A × B) ( reflection-cartesian-product-localization-global-subuniverse) up-cartesian-product-localization-global-subuniverse Z = is-equiv-source-is-equiv-target-equiv-arrow ( precomp ( unit-cartesian-product-localization-global-subuniverse) ( inclusion-global-subuniverse 𝒫 Z)) ( λ f → ( precomp ( unit-localization-global-subuniverse LB) ( inclusion-global-subuniverse 𝒫 Z)) ∘ ( precomp ( unit-localization-global-subuniverse LA) ( type-localization-global-subuniverse LB → inclusion-global-subuniverse 𝒫 Z) ( f))) ( equiv-ev-pair , equiv-ev-pair , refl-htpy) ( is-equiv-comp ( postcomp A ( precomp ( unit-localization-global-subuniverse LB) ( inclusion-global-subuniverse 𝒫 Z))) ( precomp ( unit-localization-global-subuniverse LA) ( type-localization-global-subuniverse LB → inclusion-global-subuniverse 𝒫 Z)) ( up-localization-global-subuniverse LA ( ( type-localization-global-subuniverse LB → inclusion-global-subuniverse 𝒫 Z) , ( exp-LB Z))) ( is-equiv-postcomp-is-equiv ( precomp ( unit-localization-global-subuniverse LB) ( inclusion-global-subuniverse 𝒫 Z)) ( up-localization-global-subuniverse LB Z) ( A))) cartesian-product-localization-global-subuniverse : localization-global-subuniverse 𝒫 (l3 ⊔ l4) (A × B) reflection-localization-global-subuniverse cartesian-product-localization-global-subuniverse = reflection-cartesian-product-localization-global-subuniverse up-localization-global-subuniverse cartesian-product-localization-global-subuniverse = up-cartesian-product-localization-global-subuniverse
References
- [CORS20]
- J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2025-02-03. Fredrik Bakke. Reflective global subuniverses (#1228).