Localizations at global subuniverses

Content created by Fredrik Bakke.

Created on 2025-02-03.
Last modified on 2025-02-03.

module orthogonal-factorization-systems.localizations-at-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.cones-over-cospan-diagrams
open import foundation.constant-maps
open import foundation.contractible-types
open import foundation.cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.equivalences-arrows
open import foundation.extensions-types
open import foundation.extensions-types-global-subuniverses
open import foundation.fibers-of-maps
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.global-subuniverses
open import foundation.homotopies
open import foundation.identity-types
open import foundation.postcomposition-functions
open import foundation.precomposition-dependent-functions
open import foundation.precomposition-functions
open import foundation.pullback-cones
open import foundation.pullbacks
open import foundation.sequential-limits
open import foundation.singleton-induction
open import foundation.subuniverses
open import foundation.type-theoretic-principle-of-choice
open import foundation.unit-type
open import foundation.universal-property-dependent-pair-types
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import orthogonal-factorization-systems.orthogonal-maps
open import orthogonal-factorization-systems.pullback-hom
open import orthogonal-factorization-systems.types-local-at-maps
open import orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses

Idea

Let 𝒫 be a global subuniverse. Given a type X, its localization at 𝒫, or 𝒫-localization, is a type LX in 𝒫 and a map η : X → LX such that every type in 𝒫 is η-local. I.e., for every Z in 𝒫, the precomposition map

  - ∘ η : (LX → Z) → (X → Z)

is an equivalence. This is referred to as the universal property of localizations.

Definitions

The type of localizations of a type at a global subuniverse

record
  localization-global-subuniverse
    {α : Level  Level} (𝒫 : global-subuniverse α)
    {l1 : Level} (l2 : Level) (X : UU l1) :
    UUω
  where

  constructor make-localization-global-subuniverse

  field
    reflection-localization-global-subuniverse :
      extension-type-global-subuniverse 𝒫 l2 X

  extension-type-localization-global-subuniverse :
    extension-type l2 X
  extension-type-localization-global-subuniverse =
    extension-type-extension-type-global-subuniverse 𝒫
      reflection-localization-global-subuniverse

  type-global-subuniverse-localization-global-subuniverse :
    type-global-subuniverse 𝒫 l2
  type-global-subuniverse-localization-global-subuniverse =
    type-global-subuniverse-extension-type-global-subuniverse 𝒫
      reflection-localization-global-subuniverse

  type-localization-global-subuniverse : UU l2
  type-localization-global-subuniverse =
    type-extension-type-global-subuniverse 𝒫
      reflection-localization-global-subuniverse

  is-in-global-subuniverse-type-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 type-localization-global-subuniverse
  is-in-global-subuniverse-type-localization-global-subuniverse =
    is-in-global-subuniverse-type-extension-type-global-subuniverse 𝒫
      reflection-localization-global-subuniverse

  unit-localization-global-subuniverse :
    X  type-localization-global-subuniverse
  unit-localization-global-subuniverse =
    inclusion-extension-type-global-subuniverse 𝒫
      reflection-localization-global-subuniverse

  field
    up-localization-global-subuniverse :
      universal-property-localization-global-subuniverse 𝒫 X
        reflection-localization-global-subuniverse

open localization-global-subuniverse public

Properties

Localizations are essentially unique

This is Proposition 5.1.2 in [Rij19].

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {X : UU l1}
  (LX : localization-global-subuniverse 𝒫 l2 X)
  (LX' : localization-global-subuniverse 𝒫 l3 X)
  where

  essentially-unique-type-localization-global-subuniverse :
    type-localization-global-subuniverse LX 
    type-localization-global-subuniverse LX'
  essentially-unique-type-localization-global-subuniverse =
    essentially-unique-type-universal-property-localization-global-subuniverse 𝒫
      ( reflection-localization-global-subuniverse LX)
      ( reflection-localization-global-subuniverse LX')
      ( up-localization-global-subuniverse LX)
      ( up-localization-global-subuniverse LX')

  essentially-unique-reflection-localization-global-subuniverse :
    equiv-extension-type-global-subuniverse 𝒫
      ( reflection-localization-global-subuniverse LX)
      ( reflection-localization-global-subuniverse LX')
  essentially-unique-reflection-localization-global-subuniverse =
    essentially-unique-extension-type-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse LX)
      ( reflection-localization-global-subuniverse LX')
      ( up-localization-global-subuniverse LX)
      ( up-localization-global-subuniverse LX')

Localizations are unique

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 : Level} {X : UU l1}
  (LX LX' : localization-global-subuniverse 𝒫 l2 X)
  where

  unique-type-localization-global-subuniverse :
    type-localization-global-subuniverse LX 
    type-localization-global-subuniverse LX'
  unique-type-localization-global-subuniverse =
    unique-type-universal-property-localization-global-subuniverse 𝒫
      ( reflection-localization-global-subuniverse LX)
      ( reflection-localization-global-subuniverse LX')
      ( up-localization-global-subuniverse LX)
      ( up-localization-global-subuniverse LX')

  unique-reflection-localization-global-subuniverse :
    reflection-localization-global-subuniverse LX 
    reflection-localization-global-subuniverse LX'
  unique-reflection-localization-global-subuniverse =
    unique-extension-type-universal-property-localization-global-subuniverse 𝒫
      ( reflection-localization-global-subuniverse LX)
      ( reflection-localization-global-subuniverse LX')
      ( up-localization-global-subuniverse LX)
      ( up-localization-global-subuniverse LX')

If the unit type has a 𝒫-localization then it is in 𝒫

This is Corollary 5.1.4 of [Rij19].

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  where

  is-equiv-unit-has-localization-global-subuniverse-unit :
    {l : Level} (L : localization-global-subuniverse 𝒫 l unit) 
    is-equiv (unit-localization-global-subuniverse L)
  is-equiv-unit-has-localization-global-subuniverse-unit L =
    is-equiv-unit-retraction-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse L)
      ( up-localization-global-subuniverse L)
      ( retraction-point (unit-localization-global-subuniverse L star))

  is-in-global-subuniverse-has-localization-global-subuniverse-unit :
    {l : Level} (L : localization-global-subuniverse 𝒫 l unit) 
    is-in-global-subuniverse 𝒫 unit
  is-in-global-subuniverse-has-localization-global-subuniverse-unit L =
    is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse L)
      ( up-localization-global-subuniverse L)
      ( is-equiv-unit-has-localization-global-subuniverse-unit L)

If a contractible type has a 𝒫-localization then it is in 𝒫

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 : Level} {A : UU l1} (H : is-contr A)
  (LA : localization-global-subuniverse 𝒫 l2 A)
  where

  is-equiv-unit-has-localization-global-subuniverse-is-contr :
    is-equiv (unit-localization-global-subuniverse LA)
  is-equiv-unit-has-localization-global-subuniverse-is-contr =
    is-equiv-unit-retraction-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse LA)
      ( up-localization-global-subuniverse LA)
      ( const (type-localization-global-subuniverse LA) (center H) ,
        contraction H)

  is-in-global-subuniverse-has-localization-global-subuniverse-is-contr :
    is-in-global-subuniverse 𝒫 A
  is-in-global-subuniverse-has-localization-global-subuniverse-is-contr =
    is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse LA)
      ( up-localization-global-subuniverse LA)
      ( is-equiv-unit-has-localization-global-subuniverse-is-contr)

Dependent sums of dependent types over localizations

Given a localization η : X → LX with respect to a global subuniverse 𝒫 and a dependent type P over LX, then if the dependent sum Σ (l : LX), P l is in 𝒫 the dependent type P is η-local.

This is stated as Proposition 5.1.5 in [Rij19] and as Proposition 2.8 in [CORS20].

Proof. Consider the following diagram.

                          - ∘ η
      (Π (l : LX), P l) --------> (Π (x : X), P (η x))
             |                             |
             |                             |
             |                             |
             |                             |
             ∨            - ∘ η            ∨
  (LX → Σ (l : LX), P l) ------> (X → Σ (l : LX), P l)
             |                             |
             |                             |
     pr1 ∘ - |                             | pr1 ∘ -
             |                             |
             ∨            - ∘ η            ∨
    id ∈ (LX → LX) -------------------> (X → LX)

The bottom horizontal map is an equivalence by the universal property of the localization and the top vertical maps are fiber inclusions. Therefore, the middle horizontal map is an equivalence and the bottom square is a pullback if and only if the the top horizontal map is an equivalence.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {X : UU l1}
  (LX : localization-global-subuniverse 𝒫 l2 X)
  {P : type-localization-global-subuniverse LX  UU l3}
  where

  is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 (Σ (type-localization-global-subuniverse LX) P) 
    is-local-dependent-type (unit-localization-global-subuniverse LX) P
  is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse
    H =
    is-equiv-target-is-equiv-source-equiv-arrow _ _
      ( equiv-Π-equiv-family (equiv-fiber-pr1 P) ,
        equiv-Π-equiv-family
          ( equiv-fiber-pr1 P  unit-localization-global-subuniverse LX) ,
        refl-htpy)
      ( is-orthogonal-fiber-condition-right-map-is-orthogonal-pullback-condition
        ( unit-localization-global-subuniverse LX)
        ( pr1 {B = P})
        ( is-pullback-is-equiv-horizontal-maps _ _
          ( cone-pullback-hom (unit-localization-global-subuniverse LX) pr1)
          ( up-localization-global-subuniverse LX
            ( type-global-subuniverse-localization-global-subuniverse LX))
          ( up-localization-global-subuniverse LX
            ( Σ (type-localization-global-subuniverse LX) P , H)))
        ( id))

This formalized proof can be made more elegant by formalizing the concept of type families that are orthogonal to maps.

Alternative proof. We have an equivalence of arrows

                                precomp η (Σ LX P)
             (B → Σ LX P) ------------------------------> (A → Σ LX P)
                  |                                           |
                ~ |                                           | ~
                  ∨                                           ∨
  Σ (h : B → LX) ((y : B) → P (h y)) --------> Σ (h : A → LX) ((x : A) → P (h x)).
                  map-Σ _ (precomp η LX) (λ h → precomp-Π η (P ∘ h))

and the functoriality of dependent pair types decomposes as a composite

  map-Σ _ (precomp η LX) (λ h → precomp-Π η (P ∘ h)) ~
  map-Σ-map-base _ (precomp η LX) ∘ tot (λ h → precomp-Π η (P ∘ h)).

Since LX is 𝒫-local the map map-Σ-map-base _ (precomp η LX) is an equivalence. Therefore, precomp η (Σ LX P) is an equivalence if and only if λ h → precomp-Π η (P ∘ h) is a fiberwise equivalence. In particular, if precomp η (Σ LX P) is an equivalence then precomp-Π η P is an equivalence.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {X : UU l1}
  (LX : localization-global-subuniverse 𝒫 l2 X)
  {P : type-localization-global-subuniverse LX  UU l3}
  where

  is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse' :
    is-in-global-subuniverse 𝒫 (Σ (type-localization-global-subuniverse LX) P) 
    is-local-dependent-type (unit-localization-global-subuniverse LX) P
  is-local-dependent-type-is-in-global-subuniverse-Σ-localization-global-subuniverse'
    H =
    is-fiberwise-equiv-is-equiv-map-Σ
      ( λ h  (x : X)  P (h x))
      ( precomp
        ( unit-localization-global-subuniverse LX)
        ( type-localization-global-subuniverse LX))
      ( λ h  precomp-Π (unit-localization-global-subuniverse LX) (P  h))
      ( up-localization-global-subuniverse LX
        ( type-global-subuniverse-localization-global-subuniverse LX))
      ( is-equiv-target-is-equiv-source-equiv-arrow
        ( precomp
          ( unit-localization-global-subuniverse LX)
          ( Σ (type-localization-global-subuniverse LX) P))
        ( map-Σ
          ( λ h  (x : X)  P (h x))
          ( precomp
            ( unit-localization-global-subuniverse LX)
            ( type-localization-global-subuniverse LX))
          ( λ h  precomp-Π (unit-localization-global-subuniverse LX) (P  h)))
        ( distributive-Π-Σ , distributive-Π-Σ , coherence-precomp-Σ)
        ( up-localization-global-subuniverse LX
          ( Σ (type-localization-global-subuniverse LX) P , H)))
      ( id)

Dependent products of 𝒫-types that have a 𝒫-localization are 𝒫-types

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2}
  (K : (x : A)  is-in-global-subuniverse 𝒫 (B x))
  (LE : localization-global-subuniverse 𝒫 l3 ((x : A)  B x))
  where

  is-in-global-subuniverse-Π-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 ((x : A)  B x)
  is-in-global-subuniverse-Π-localization-global-subuniverse =
    is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse LE)
      ( up-localization-global-subuniverse LE)
      ( distributive-Π-is-local
        ( unit-localization-global-subuniverse LE)
        ( B)
        ( λ x  up-localization-global-subuniverse LE (B x , K x)))

Exponentials of 𝒫-types that have a 𝒫-localization are 𝒫-types

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
  (K : is-in-global-subuniverse 𝒫 B)
  (LE : localization-global-subuniverse 𝒫 l3 (A  B))
  where

  is-in-global-subuniverse-exponential-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 (A  B)
  is-in-global-subuniverse-exponential-localization-global-subuniverse =
    is-in-global-subuniverse-Π-localization-global-subuniverse 𝒫  _  K) LE

Localizations of types of homotopies

Assume given a 𝒫-localization η : X → LX and two maps f g : LX → Y where Y ∈ 𝒫, then the right whiskering map - ·r η : (g ~ h) → (g ∘ η ~ h ∘ η) is an equivalence.

This is Lemma 5.1.18 in [Rij19].

Proof. We have an equivalence of maps

                ap (- ∘ η)
        g = h -----------> g ∘ η = h ∘ η
          |                       |
  htpy-eq | ~                   ~ | htpy-eq
          ∨                       ∨
        g ~ h ------------> g ∘ η ~ h ∘ η
                  - ·r η

and the map - ∘ η is an embedding since Y is η-local by the universal property, hence the top horizontal map is an equivalence and so the bottom map is as well.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {X : UU l1} {Y : UU l3}
  (LX : localization-global-subuniverse 𝒫 l2 X)
  (H : is-in-global-subuniverse 𝒫 Y)
  where

  is-equiv-right-whisker-unit-localization-global-subuniverse :
    {g h : type-localization-global-subuniverse LX  Y} 
    is-equiv
      ( λ H 
        right-whisker-comp {g = g} {h} H
          ( unit-localization-global-subuniverse LX))
  is-equiv-right-whisker-unit-localization-global-subuniverse {g} {h} =
    is-equiv-target-is-equiv-source-equiv-arrow
      ( ap (precomp (unit-localization-global-subuniverse LX) Y))
      ( _·r (unit-localization-global-subuniverse LX))
      ( equiv-funext ,
        equiv-funext ,
        coherence-htpy-eq-ap-precomp' (unit-localization-global-subuniverse LX))
      (is-emb-is-equiv (up-localization-global-subuniverse LX (Y , H)) g h)

A type is a 𝒫-type if it has a 𝒫-localization and is a pullback of types in 𝒫

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 l4 l5 : Level}
  {𝒮 : cospan-diagram l1 l2 l3}
  (c : pullback-cone 𝒮 l4)
  (LC : localization-global-subuniverse 𝒫 l5 (domain-pullback-cone 𝒮 c))
  where

  map-compute-cone-pullback-localization-global-subuniverse :
    cone
      ( left-map-cospan-diagram 𝒮)
      ( right-map-cospan-diagram 𝒮)
      ( type-localization-global-subuniverse LC) 
    cone
      ( left-map-cospan-diagram 𝒮)
      ( right-map-cospan-diagram 𝒮)
      ( domain-pullback-cone 𝒮 c)
  map-compute-cone-pullback-localization-global-subuniverse c' =
    cone-map
      ( left-map-cospan-diagram 𝒮)
      ( right-map-cospan-diagram 𝒮)
      ( c')
      ( unit-localization-global-subuniverse LC)

  is-equiv-map-compute-cone-pullback-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 (cospanning-type-cospan-diagram 𝒮) 
    is-in-global-subuniverse 𝒫 (left-type-cospan-diagram 𝒮) 
    is-in-global-subuniverse 𝒫 (right-type-cospan-diagram 𝒮) 
    is-equiv map-compute-cone-pullback-localization-global-subuniverse
  is-equiv-map-compute-cone-pullback-localization-global-subuniverse x a b =
    is-equiv-map-Σ _
      ( up-localization-global-subuniverse LC
        ( left-type-cospan-diagram 𝒮 , a))
      ( λ _ 
        is-equiv-map-Σ _
          ( up-localization-global-subuniverse LC
            ( right-type-cospan-diagram 𝒮 , b))
          ( λ _ 
            is-equiv-right-whisker-unit-localization-global-subuniverse 𝒫 LC x))

  is-in-global-subuniverse-pullback-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 (cospanning-type-cospan-diagram 𝒮) 
    is-in-global-subuniverse 𝒫 (left-type-cospan-diagram 𝒮) 
    is-in-global-subuniverse 𝒫 (right-type-cospan-diagram 𝒮) 
    is-in-global-subuniverse 𝒫 (domain-pullback-cone 𝒮 c)
  is-in-global-subuniverse-pullback-localization-global-subuniverse x a b =
    is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( reflection-localization-global-subuniverse LC)
      ( up-localization-global-subuniverse LC)
      ( is-equiv-source-is-equiv-target-equiv-arrow
        ( precomp
          ( unit-localization-global-subuniverse LC)
          ( domain-pullback-cone 𝒮 c))
        ( map-compute-cone-pullback-localization-global-subuniverse)
        ( ( ( cone-map
              ( left-map-cospan-diagram 𝒮)
              ( right-map-cospan-diagram 𝒮)
              ( cone-pullback-cone 𝒮 c)) ,
            ( up-pullback-cone 𝒮 c (type-localization-global-subuniverse LC))) ,
          ( ( cone-map
              ( left-map-cospan-diagram 𝒮)
              ( right-map-cospan-diagram 𝒮)
              ( cone-pullback-cone 𝒮 c)) ,
            ( up-pullback-cone 𝒮 c ( domain-pullback-cone 𝒮 c))) ,
          ( refl-htpy))
        ( is-equiv-map-compute-cone-pullback-localization-global-subuniverse
            ( x)
            ( a)
            ( b)))

Cartesian products of 𝒫-types that have a 𝒫-localization are 𝒫-types

Let 𝒫 be a global subuniverse such that unit is a 𝒫-type. Then if A and B are 𝒫-types and their cartesian product A × B has a 𝒫-localization, then A × B is a 𝒫-type.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  (U : is-in-global-subuniverse 𝒫 unit)
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
  (H : is-in-global-subuniverse 𝒫 A)
  (K : is-in-global-subuniverse 𝒫 B)
  (LI : localization-global-subuniverse 𝒫 l3 (A × B))
  where

  is-in-global-subuniverse-cartesian-product-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 (A × B)
  is-in-global-subuniverse-cartesian-product-localization-global-subuniverse =
    is-in-global-subuniverse-pullback-localization-global-subuniverse 𝒫
      ( pullback-cone-cartesian-product)
      ( LI)
      ( U)
      ( H)
      ( K)

Identity types of 𝒫-types that have a 𝒫-localization are 𝒫-types

Let 𝒫 be a global subuniverse such that unit is a 𝒫-type. Now assume given a 𝒫-type A with elements x and y such that x = y has a 𝒫-localization, then x = y is a 𝒫-type.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  (U : is-in-global-subuniverse 𝒫 unit)
  {l1 l2 : Level} {A : UU l1} {x y : A}
  (H : is-in-global-subuniverse 𝒫 A)
  (LI : localization-global-subuniverse 𝒫 l2 (x  y))
  where

  is-in-global-subuniverse-Id-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 (x  y)
  is-in-global-subuniverse-Id-localization-global-subuniverse =
    is-in-global-subuniverse-pullback-localization-global-subuniverse 𝒫
      ( pullback-cone-Id x y)
      ( LI)
      ( H)
      ( U)
      ( U)

Sequential limits of 𝒫-types that have a 𝒫-localization are 𝒫-types

This remains to be formalized.

Cartesian products of 𝒫-localizations

Let 𝒫 be a global subuniverse, then if η_A : A → LA and η_B : B → LB are 𝒫-localizations such that LA × LB is a 𝒫-type and 𝒫 is closed under exponentiating by LB, then η_A × η_B : A × B → LA × LB is a 𝒫-localization as well.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2}
  (LA : localization-global-subuniverse 𝒫 l3 A)
  (LB : localization-global-subuniverse 𝒫 l4 B)
  (exp-LB :
    {l : Level}
    (Z : type-global-subuniverse 𝒫 l) 
    is-in-global-subuniverse 𝒫
      ( type-localization-global-subuniverse LB 
        inclusion-global-subuniverse 𝒫 Z))
  (H :
    is-in-global-subuniverse 𝒫
      ( type-localization-global-subuniverse LA ×
        type-localization-global-subuniverse LB))
  where

  type-cartesian-product-localization-global-subuniverse :
    UU (l3  l4)
  type-cartesian-product-localization-global-subuniverse =
    type-localization-global-subuniverse LA ×
    type-localization-global-subuniverse LB

  unit-cartesian-product-localization-global-subuniverse :
    A × B  type-cartesian-product-localization-global-subuniverse
  unit-cartesian-product-localization-global-subuniverse =
    map-product
      ( unit-localization-global-subuniverse LA)
      ( unit-localization-global-subuniverse LB)

  reflection-cartesian-product-localization-global-subuniverse :
    extension-type-global-subuniverse 𝒫 (l3  l4) (A × B)
  reflection-cartesian-product-localization-global-subuniverse =
    ( type-cartesian-product-localization-global-subuniverse , H) ,
    ( unit-cartesian-product-localization-global-subuniverse)

  up-cartesian-product-localization-global-subuniverse :
    universal-property-localization-global-subuniverse 𝒫 (A × B)
      ( reflection-cartesian-product-localization-global-subuniverse)
  up-cartesian-product-localization-global-subuniverse Z =
    is-equiv-source-is-equiv-target-equiv-arrow
      ( precomp
        ( unit-cartesian-product-localization-global-subuniverse)
        ( inclusion-global-subuniverse 𝒫 Z))
      ( λ f 
        ( precomp
          ( unit-localization-global-subuniverse LB)
          ( inclusion-global-subuniverse 𝒫 Z)) 
        ( precomp
          ( unit-localization-global-subuniverse LA)
          ( type-localization-global-subuniverse LB 
            inclusion-global-subuniverse 𝒫 Z)
          ( f)))
      ( equiv-ev-pair , equiv-ev-pair , refl-htpy)
      ( is-equiv-comp
        ( postcomp A
          ( precomp
            ( unit-localization-global-subuniverse LB)
            ( inclusion-global-subuniverse 𝒫 Z)))
        ( precomp
          ( unit-localization-global-subuniverse LA)
          ( type-localization-global-subuniverse LB 
            inclusion-global-subuniverse 𝒫 Z))
        ( up-localization-global-subuniverse LA
          ( ( type-localization-global-subuniverse LB 
              inclusion-global-subuniverse 𝒫 Z) ,
            ( exp-LB Z)))
        ( is-equiv-postcomp-is-equiv
          ( precomp
            ( unit-localization-global-subuniverse LB)
            ( inclusion-global-subuniverse 𝒫 Z))
          ( up-localization-global-subuniverse LB Z)
          ( A)))

  cartesian-product-localization-global-subuniverse :
    localization-global-subuniverse 𝒫 (l3  l4) (A × B)
  reflection-localization-global-subuniverse
    cartesian-product-localization-global-subuniverse =
    reflection-cartesian-product-localization-global-subuniverse
  up-localization-global-subuniverse
    cartesian-product-localization-global-subuniverse =
    up-cartesian-product-localization-global-subuniverse

References

[CORS20]
J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
[Rij19]
Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.

Recent changes