Function commutative semirings
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-03-13.
Last modified on 2023-05-04.
module commutative-algebra.function-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings open import commutative-algebra.dependent-products-commutative-semirings open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.commutative-monoids open import ring-theory.semirings
Idea
Given a commutative semiring A
and a type X
, the type A^X
of functions
from X
to the underlying type of A
is again a commutative semiring.
Definition
module _ {l1 l2 : Level} (A : Commutative-Semiring l1) (X : UU l2) where function-Commutative-Semiring : Commutative-Semiring (l1 ⊔ l2) function-Commutative-Semiring = Π-Commutative-Semiring X (λ _ → A) semiring-function-Commutative-Semiring : Semiring (l1 ⊔ l2) semiring-function-Commutative-Semiring = semiring-Π-Commutative-Semiring X (λ _ → A) additive-commutative-monoid-function-Commutative-Semiring : Commutative-Monoid (l1 ⊔ l2) additive-commutative-monoid-function-Commutative-Semiring = additive-commutative-monoid-Π-Commutative-Semiring X (λ _ → A) multiplicative-commutative-monoid-function-Commutative-Semiring : Commutative-Monoid (l1 ⊔ l2) multiplicative-commutative-monoid-function-Commutative-Semiring = multiplicative-commutative-monoid-Π-Commutative-Semiring X (λ _ → A) set-function-Commutative-Semiring : Set (l1 ⊔ l2) set-function-Commutative-Semiring = set-Π-Commutative-Semiring X (λ _ → A) type-function-Commutative-Semiring : UU (l1 ⊔ l2) type-function-Commutative-Semiring = type-Π-Commutative-Semiring X (λ _ → A) is-set-type-function-Commutative-Semiring : is-set type-function-Commutative-Semiring is-set-type-function-Commutative-Semiring = is-set-type-Π-Commutative-Semiring X (λ _ → A) add-function-Commutative-Semiring : type-function-Commutative-Semiring → type-function-Commutative-Semiring → type-function-Commutative-Semiring add-function-Commutative-Semiring = add-Π-Commutative-Semiring X (λ _ → A) zero-function-Commutative-Semiring : type-function-Commutative-Semiring zero-function-Commutative-Semiring = zero-Π-Commutative-Semiring X (λ _ → A) associative-add-function-Commutative-Semiring : (x y z : type-function-Commutative-Semiring) → add-function-Commutative-Semiring ( add-function-Commutative-Semiring x y) ( z) = add-function-Commutative-Semiring ( x) ( add-function-Commutative-Semiring y z) associative-add-function-Commutative-Semiring = associative-add-Π-Commutative-Semiring X (λ _ → A) left-unit-law-add-function-Commutative-Semiring : (x : type-function-Commutative-Semiring) → add-function-Commutative-Semiring zero-function-Commutative-Semiring x = x left-unit-law-add-function-Commutative-Semiring = left-unit-law-add-Π-Commutative-Semiring X (λ _ → A) right-unit-law-add-function-Commutative-Semiring : (x : type-function-Commutative-Semiring) → add-function-Commutative-Semiring x zero-function-Commutative-Semiring = x right-unit-law-add-function-Commutative-Semiring = right-unit-law-add-Π-Commutative-Semiring X (λ _ → A) commutative-add-function-Commutative-Semiring : (x y : type-function-Commutative-Semiring) → add-function-Commutative-Semiring x y = add-function-Commutative-Semiring y x commutative-add-function-Commutative-Semiring = commutative-add-Π-Commutative-Semiring X (λ _ → A) mul-function-Commutative-Semiring : type-function-Commutative-Semiring → type-function-Commutative-Semiring → type-function-Commutative-Semiring mul-function-Commutative-Semiring = mul-Π-Commutative-Semiring X (λ _ → A) one-function-Commutative-Semiring : type-function-Commutative-Semiring one-function-Commutative-Semiring = one-Π-Commutative-Semiring X (λ _ → A) associative-mul-function-Commutative-Semiring : (x y z : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring ( mul-function-Commutative-Semiring x y) ( z) = mul-function-Commutative-Semiring ( x) ( mul-function-Commutative-Semiring y z) associative-mul-function-Commutative-Semiring = associative-mul-Π-Commutative-Semiring X (λ _ → A) left-unit-law-mul-function-Commutative-Semiring : (x : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring one-function-Commutative-Semiring x = x left-unit-law-mul-function-Commutative-Semiring = left-unit-law-mul-Π-Commutative-Semiring X (λ _ → A) right-unit-law-mul-function-Commutative-Semiring : (x : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring x one-function-Commutative-Semiring = x right-unit-law-mul-function-Commutative-Semiring = right-unit-law-mul-Π-Commutative-Semiring X (λ _ → A) left-distributive-mul-add-function-Commutative-Semiring : (f g h : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring f ( add-function-Commutative-Semiring g h) = add-function-Commutative-Semiring ( mul-function-Commutative-Semiring f g) ( mul-function-Commutative-Semiring f h) left-distributive-mul-add-function-Commutative-Semiring = left-distributive-mul-add-Π-Commutative-Semiring X (λ _ → A) right-distributive-mul-add-function-Commutative-Semiring : (f g h : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring ( add-function-Commutative-Semiring f g) h = add-function-Commutative-Semiring ( mul-function-Commutative-Semiring f h) ( mul-function-Commutative-Semiring g h) right-distributive-mul-add-function-Commutative-Semiring = right-distributive-mul-add-Π-Commutative-Semiring X (λ _ → A) left-zero-law-mul-function-Commutative-Semiring : (f : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring zero-function-Commutative-Semiring f = zero-function-Commutative-Semiring left-zero-law-mul-function-Commutative-Semiring = left-zero-law-mul-Π-Commutative-Semiring X (λ _ → A) right-zero-law-mul-function-Commutative-Semiring : (f : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring f zero-function-Commutative-Semiring = zero-function-Commutative-Semiring right-zero-law-mul-function-Commutative-Semiring = right-zero-law-mul-Π-Commutative-Semiring X (λ _ → A) commutative-mul-function-Commutative-Semiring : (f g : type-function-Commutative-Semiring) → mul-function-Commutative-Semiring f g = mul-function-Commutative-Semiring g f commutative-mul-function-Commutative-Semiring = commutative-mul-Commutative-Monoid multiplicative-commutative-monoid-function-Commutative-Semiring
Recent changes
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).