Sums of finite sequences of elements in commutative semigroups
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
{-# OPTIONS --lossy-unification #-} module group-theory.sums-of-finite-sequences-of-elements-commutative-semigroups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import finite-group-theory.permutations-standard-finite-types open import finite-group-theory.transpositions-standard-finite-types open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.negated-equality open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import group-theory.commutative-semigroups open import group-theory.sums-of-finite-sequences-of-elements-semigroups open import linear-algebra.finite-sequences-in-commutative-semigroups open import lists.lists open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
The
sum operation¶
extends the binary operation on a
commutative semigroup G
to any
finite sequence of elements of G
.
We use additive terminology consistently with the linear algebra definition of finite sequences in commutative semigroups despite the use of multiplicative terminology for commutative semigroups in general.
Definition
sum-fin-sequence-type-Commutative-Semigroup : {l : Level} (G : Commutative-Semigroup l) (n : ℕ) → fin-sequence-type-Commutative-Semigroup G (succ-ℕ n) → type-Commutative-Semigroup G sum-fin-sequence-type-Commutative-Semigroup G = sum-fin-sequence-type-Semigroup (semigroup-Commutative-Semigroup G)
Properties
Sums are homotopy invariant
module _ {l : Level} (G : Commutative-Semigroup l) where htpy-sum-fin-sequence-type-Commutative-Semigroup : (n : ℕ) {f g : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)} → (f ~ g) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n g htpy-sum-fin-sequence-type-Commutative-Semigroup = htpy-sum-fin-sequence-type-Semigroup (semigroup-Commutative-Semigroup G)
Splitting sums of succ-ℕ n + succ-ℕ m
elements into a sum of succ-ℕ n
elements and a sum of succ-ℕ m
elements
split-sum-fin-sequence-type-Commutative-Semigroup : {l : Level} (G : Commutative-Semigroup l) (n m : ℕ) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n +ℕ succ-ℕ m)) → sum-fin-sequence-type-Commutative-Semigroup G (succ-ℕ n +ℕ m) f = mul-Commutative-Semigroup G ( sum-fin-sequence-type-Commutative-Semigroup G n ( f ∘ inl-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) ( sum-fin-sequence-type-Commutative-Semigroup G m ( f ∘ inr-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) split-sum-fin-sequence-type-Commutative-Semigroup G = split-sum-fin-sequence-type-Semigroup (semigroup-Commutative-Semigroup G)
Permutations preserve sums
module _ {l : Level} (G : Commutative-Semigroup l) where abstract preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup : (n : ℕ) → (k : Fin n) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-adjacent-transposition-Fin n k) preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup (succ-ℕ n) (inl x) f = ap-mul-Commutative-Semigroup ( G) ( preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup ( n) ( x) ( f ∘ inl-Fin (succ-ℕ n))) ( refl) preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup (succ-ℕ (succ-ℕ n)) (inr star) f = right-swap-mul-Commutative-Semigroup G _ _ _ preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup (succ-ℕ zero-ℕ) (inr star) f = commutative-mul-Commutative-Semigroup G _ _ preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup : (n : ℕ) → (L : list (Fin n)) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-permutation-list-adjacent-transpositions n L) preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup n nil f = refl preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup n (cons x L) f = preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup ( n) ( x) ( f) ∙ preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup ( n) ( L) ( f ∘ map-adjacent-transposition-Fin n x) preserves-sum-transposition-Commutative-Semigroup : (n : ℕ) (i j : Fin (succ-ℕ n)) (neq : i ≠ j) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-transposition-Fin (succ-ℕ n) i j neq) preserves-sum-transposition-Commutative-Semigroup n i j i≠j f = preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup ( n) ( list-adjacent-transpositions-transposition-Fin n i j) ( f) ∙ ap ( λ g → sum-fin-sequence-type-Commutative-Semigroup G ( n) ( f ∘ map-equiv g)) ( eq-permutation-list-adjacent-transpositions-transposition-Fin ( n) ( i) ( j) ( i≠j)) preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup : (n : ℕ) → (L : list (Σ (Fin (succ-ℕ n) × Fin (succ-ℕ n)) ( λ (i , j) → i ≠ j))) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n ( f ∘ map-equiv (permutation-list-standard-transpositions-Fin (succ-ℕ n) L)) preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup zero-ℕ _ f = ap f (eq-is-prop is-prop-Fin-1) preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup (succ-ℕ n) nil f = refl preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup (succ-ℕ n) (cons ((i , j) , i≠j) L) f = preserves-sum-transposition-Commutative-Semigroup (succ-ℕ n) i j i≠j f ∙ preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup ( succ-ℕ n) ( L) ( f ∘ map-transposition-Fin (succ-ℕ (succ-ℕ n)) i j i≠j) preserves-sum-permutation-fin-sequence-type-Commutative-Semigroup : (n : ℕ) → (σ : Permutation (succ-ℕ n)) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-equiv σ) preserves-sum-permutation-fin-sequence-type-Commutative-Semigroup n σ f = preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup ( n) ( list-standard-transpositions-permutation-Fin (succ-ℕ n) σ) ( f) ∙ ap ( λ τ → sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-equiv τ)) ( eq-permutation-list-standard-transpositions-Fin (succ-ℕ n) σ)
See also
External links
- Sum at Wikidata
Recent changes
- 2025-08-31. Louis Wasserman. Commutative semigroups (#1494).