Sums of finite sequences of elements in commutative semigroups
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
{-# OPTIONS --lossy-unification #-} module group-theory.sums-of-finite-sequences-of-elements-commutative-semigroups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import finite-group-theory.permutations-standard-finite-types open import finite-group-theory.transpositions-standard-finite-types open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.negated-equality open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import group-theory.commutative-semigroups open import group-theory.sums-of-finite-sequences-of-elements-semigroups open import linear-algebra.finite-sequences-in-commutative-semigroups open import lists.lists open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
The
sum operation¶
extends the binary operation on a
commutative semigroup G to any
finite sequence of elements of G.
We use additive terminology consistently with the linear algebra definition of finite sequences in commutative semigroups despite the use of multiplicative terminology for commutative semigroups in general.
Definition
sum-fin-sequence-type-Commutative-Semigroup : {l : Level} (G : Commutative-Semigroup l) (n : ℕ) → fin-sequence-type-Commutative-Semigroup G (succ-ℕ n) → type-Commutative-Semigroup G sum-fin-sequence-type-Commutative-Semigroup G = sum-fin-sequence-type-Semigroup (semigroup-Commutative-Semigroup G)
Properties
Sums are homotopy invariant
module _ {l : Level} (G : Commutative-Semigroup l) where htpy-sum-fin-sequence-type-Commutative-Semigroup : (n : ℕ) {f g : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)} → (f ~ g) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n g htpy-sum-fin-sequence-type-Commutative-Semigroup = htpy-sum-fin-sequence-type-Semigroup (semigroup-Commutative-Semigroup G)
Splitting sums of succ-ℕ n + succ-ℕ m elements into a sum of succ-ℕ n elements and a sum of succ-ℕ m elements
split-sum-fin-sequence-type-Commutative-Semigroup : {l : Level} (G : Commutative-Semigroup l) (n m : ℕ) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n +ℕ succ-ℕ m)) → sum-fin-sequence-type-Commutative-Semigroup G (succ-ℕ n +ℕ m) f = mul-Commutative-Semigroup G ( sum-fin-sequence-type-Commutative-Semigroup G n ( f ∘ inl-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) ( sum-fin-sequence-type-Commutative-Semigroup G m ( f ∘ inr-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) split-sum-fin-sequence-type-Commutative-Semigroup G = split-sum-fin-sequence-type-Semigroup (semigroup-Commutative-Semigroup G)
Permutations preserve sums
module _ {l : Level} (G : Commutative-Semigroup l) where abstract preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup : (n : ℕ) → (k : Fin n) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-adjacent-transposition-Fin n k) preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup (succ-ℕ n) (inl x) f = ap-mul-Commutative-Semigroup ( G) ( preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup ( n) ( x) ( f ∘ inl-Fin (succ-ℕ n))) ( refl) preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup (succ-ℕ (succ-ℕ n)) (inr star) f = right-swap-mul-Commutative-Semigroup G _ _ _ preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup (succ-ℕ zero-ℕ) (inr star) f = commutative-mul-Commutative-Semigroup G _ _ preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup : (n : ℕ) → (L : list (Fin n)) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-permutation-list-adjacent-transpositions n L) preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup n nil f = refl preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup n (cons x L) f = preserves-sum-adjacent-transposition-sum-fin-sequence-type-Commutative-Semigroup ( n) ( x) ( f) ∙ preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup ( n) ( L) ( f ∘ map-adjacent-transposition-Fin n x) preserves-sum-transposition-Commutative-Semigroup : (n : ℕ) (i j : Fin (succ-ℕ n)) (neq : i ≠ j) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-transposition-Fin (succ-ℕ n) i j neq) preserves-sum-transposition-Commutative-Semigroup n i j i≠j f = preserves-sum-permutation-list-adjacent-transpositions-Commutative-Semigroup ( n) ( list-adjacent-transpositions-transposition-Fin n i j) ( f) ∙ ap ( λ g → sum-fin-sequence-type-Commutative-Semigroup G ( n) ( f ∘ map-equiv g)) ( eq-permutation-list-adjacent-transpositions-transposition-Fin ( n) ( i) ( j) ( i≠j)) preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup : (n : ℕ) → (L : list (Σ (Fin (succ-ℕ n) × Fin (succ-ℕ n)) ( λ (i , j) → i ≠ j))) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n ( f ∘ map-equiv (permutation-list-standard-transpositions-Fin (succ-ℕ n) L)) preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup zero-ℕ _ f = ap f (eq-is-prop is-prop-Fin-1) preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup (succ-ℕ n) nil f = refl preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup (succ-ℕ n) (cons ((i , j) , i≠j) L) f = preserves-sum-transposition-Commutative-Semigroup (succ-ℕ n) i j i≠j f ∙ preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup ( succ-ℕ n) ( L) ( f ∘ map-transposition-Fin (succ-ℕ (succ-ℕ n)) i j i≠j) preserves-sum-permutation-fin-sequence-type-Commutative-Semigroup : (n : ℕ) → (σ : Permutation (succ-ℕ n)) → (f : fin-sequence-type-Commutative-Semigroup G (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Semigroup G n f = sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-equiv σ) preserves-sum-permutation-fin-sequence-type-Commutative-Semigroup n σ f = preserves-sum-permutation-list-standard-transpositions-Commutative-Semigroup ( n) ( list-standard-transpositions-permutation-Fin (succ-ℕ n) σ) ( f) ∙ ap ( λ τ → sum-fin-sequence-type-Commutative-Semigroup G n (f ∘ map-equiv τ)) ( eq-permutation-list-standard-transpositions-Fin (succ-ℕ n) σ)
See also
External links
- Sum at Wikidata
Recent changes
- 2025-08-31. Louis Wasserman. Commutative semigroups (#1494).