Raising universe levels of lower Dedekind real numbers
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.raising-universe-levels-lower-dedekind-real-numbers where
Imports
open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.functoriality-cartesian-product-types open import foundation.inhabited-subtypes open import foundation.logical-equivalences open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.universe-levels open import logic.functoriality-existential-quantification open import real-numbers.lower-dedekind-real-numbers
Idea
For every universe 𝒰 there is a type of
lower Dedekind real numbers
lower-ℝ relative to 𝒰, lower-ℝ 𝒰. Given a larger universe 𝒱, then we may
raise¶
a lower Dedekind real number x from the universe 𝒰 to a lower Dedekind real
number in the universe 𝒱.
Definition
module _ {l0 : Level} (l : Level) (x : lower-ℝ l0) where cut-raise-lower-ℝ : subtype (l0 ⊔ l) ℚ cut-raise-lower-ℝ = raise-subtype l (cut-lower-ℝ x) abstract is-inhabited-cut-raise-lower-ℝ : is-inhabited-subtype cut-raise-lower-ℝ is-inhabited-cut-raise-lower-ℝ = map-tot-exists (λ _ → map-raise) (is-inhabited-cut-lower-ℝ x) is-rounded-cut-raise-lower-ℝ : (q : ℚ) → is-in-subtype cut-raise-lower-ℝ q ↔ exists ℚ (λ r → le-ℚ-Prop q r ∧ cut-raise-lower-ℝ r) is-rounded-cut-raise-lower-ℝ q = ( iff-tot-exists ( λ r → iff-equiv ( equiv-product-right ( compute-raise l (is-in-cut-lower-ℝ x r))))) ∘iff ( is-rounded-cut-lower-ℝ x q) ∘iff ( iff-equiv (inv-compute-raise l (is-in-cut-lower-ℝ x q))) raise-lower-ℝ : lower-ℝ (l0 ⊔ l) raise-lower-ℝ = ( cut-raise-lower-ℝ , is-inhabited-cut-raise-lower-ℝ , is-rounded-cut-raise-lower-ℝ)
Recent changes
- 2026-02-15. Louis Wasserman. The maximum of finite families of nonnegative numbers (#1815).