Bezout’s lemma in the integers
Content created by Fredrik Bakke, Egbert Rijke, Victor Blanchi, malarbol and Jonathan Prieto-Cubides.
Created on 2023-04-08.
Last modified on 2024-10-29.
module elementary-number-theory.bezouts-lemma-integers where
Imports
open import elementary-number-theory.absolute-value-integers open import elementary-number-theory.addition-integers open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.bezouts-lemma-natural-numbers open import elementary-number-theory.difference-integers open import elementary-number-theory.distance-integers open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.divisibility-integers open import elementary-number-theory.divisibility-natural-numbers open import elementary-number-theory.greatest-common-divisor-integers open import elementary-number-theory.greatest-common-divisor-natural-numbers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.multiplication-positive-and-negative-integers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-integers open import elementary-number-theory.positive-and-negative-integers open import elementary-number-theory.positive-integers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.unit-type
Bézout’s Lemma is the 60th theorem on Freek Wiedijk’s list of 100 theorems [Wie]. It was originally added to agda-unimath by Bryan Lu.
Lemma
bezouts-lemma-eqn-to-int : (x y : ℤ) → (H : is-nonzero-ℕ ((abs-ℤ x) +ℕ (abs-ℤ y))) → nat-gcd-ℤ x y = dist-ℕ ( abs-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H) *ℤ x)) ( abs-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H) *ℤ y)) bezouts-lemma-eqn-to-int x y H = equational-reasoning nat-gcd-ℤ x y = dist-ℕ ( (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H) *ℕ (abs-ℤ x)) ( (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H) *ℕ (abs-ℤ y)) by (inv (bezouts-lemma-eqn-ℕ (abs-ℤ x) (abs-ℤ y) H)) = dist-ℕ ( mul-ℕ ( abs-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H))) ( abs-ℤ x)) ( mul-ℕ ( minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H) ( abs-ℤ y)) by ( ap ( λ K → dist-ℕ ( K *ℕ (abs-ℤ x)) ( mul-ℕ ( minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H) ( abs-ℤ y))) ( inv ( abs-int-ℕ ( minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H)))) = dist-ℕ ( mul-ℕ ( abs-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H))) ( abs-ℤ x)) ( mul-ℕ ( abs-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H))) ( abs-ℤ y)) by ( ap ( λ K → dist-ℕ ( mul-ℕ ( abs-ℤ ( int-ℕ ( minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H))) ( abs-ℤ x)) ( K *ℕ (abs-ℤ y))) (inv ( abs-int-ℕ ( minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H)))) = dist-ℕ ( abs-ℤ ( mul-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H)) ( x))) ( mul-ℕ ( abs-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H))) ( abs-ℤ y)) by ( ap ( λ K → dist-ℕ ( K) ( mul-ℕ ( abs-ℤ ( int-ℕ ( minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H))) ( abs-ℤ y))) ( inv ( multiplicative-abs-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H)) ( x)))) = dist-ℕ ( abs-ℤ ( mul-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H)) ( x))) ( abs-ℤ ( mul-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H)) ( y))) by ( ap ( dist-ℕ ( abs-ℤ ( mul-ℤ ( int-ℕ ( minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) H)) ( x)))) ( inv ( multiplicative-abs-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) H)) ( y)))) refactor-pos-cond : (x y : ℤ) → (H : is-positive-ℤ x) → (K : is-positive-ℤ y) → is-nonzero-ℕ ((abs-ℤ x) +ℕ (abs-ℤ y)) refactor-pos-cond x y H _ = is-nonzero-abs-ℤ x H ∘ is-zero-left-is-zero-add-ℕ (abs-ℤ x) (abs-ℤ y) bezouts-lemma-refactor-hypotheses : (x y : ℤ) (H : is-positive-ℤ x) (K : is-positive-ℤ y) → nat-gcd-ℤ x y = abs-ℤ ( diff-ℤ ( mul-ℤ ( int-ℕ ( minimal-positive-distance-x-coeff ( abs-ℤ x) ( abs-ℤ y) ( refactor-pos-cond x y H K))) ( x)) ( mul-ℤ ( int-ℕ ( minimal-positive-distance-y-coeff ( abs-ℤ x) ( abs-ℤ y) ( refactor-pos-cond x y H K))) ( y))) bezouts-lemma-refactor-hypotheses x y H K = equational-reasoning nat-gcd-ℤ x y = dist-ℕ ( abs-ℤ ( mul-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) P)) ( x))) ( abs-ℤ ( mul-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) P)) ( y))) by bezouts-lemma-eqn-to-int x y P = dist-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) P) *ℤ x) ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) P) *ℤ y) by dist-abs-ℤ ( mul-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) P)) ( x)) ( mul-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) P)) ( y)) x-product-nonneg y-product-nonneg where P : is-nonzero-ℕ ((abs-ℤ x) +ℕ (abs-ℤ y)) P = (refactor-pos-cond x y H K) x-product-nonneg : is-nonnegative-ℤ ( int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) P) *ℤ x) x-product-nonneg = is-nonnegative-mul-ℤ ( is-nonnegative-int-ℕ ( minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) P)) ( is-nonnegative-is-positive-ℤ H) y-product-nonneg : is-nonnegative-ℤ ( int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) P) *ℤ y) y-product-nonneg = is-nonnegative-mul-ℤ ( is-nonnegative-int-ℕ ( minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) P)) ( is-nonnegative-is-positive-ℤ K) bezouts-lemma-pos-ints : (x y : ℤ) (H : is-positive-ℤ x) (K : is-positive-ℤ y) → Σ ℤ (λ s → Σ ℤ (λ t → (s *ℤ x) +ℤ (t *ℤ y) = gcd-ℤ x y)) bezouts-lemma-pos-ints x y H K = sx-ty-nonneg-case-split ( decide-is-nonnegative-is-nonnegative-neg-ℤ {(s *ℤ x) -ℤ (t *ℤ y)}) where s : ℤ s = int-ℕ (minimal-positive-distance-x-coeff (abs-ℤ x) (abs-ℤ y) (refactor-pos-cond x y H K)) t : ℤ t = int-ℕ (minimal-positive-distance-y-coeff (abs-ℤ x) (abs-ℤ y) (refactor-pos-cond x y H K)) sx-ty-nonneg-case-split : ( is-nonnegative-ℤ ((s *ℤ x) -ℤ (t *ℤ y)) + is-nonnegative-ℤ (neg-ℤ ((s *ℤ x) -ℤ (t *ℤ y)))) → Σ ℤ (λ s → Σ ℤ (λ t → (s *ℤ x) +ℤ (t *ℤ y) = gcd-ℤ x y)) pr1 (sx-ty-nonneg-case-split (inl pos)) = s pr1 (pr2 (sx-ty-nonneg-case-split (inl pos))) = neg-ℤ t pr2 (pr2 (sx-ty-nonneg-case-split (inl pos))) = inv ( equational-reasoning gcd-ℤ x y = int-ℕ (abs-ℤ ((s *ℤ x) -ℤ (t *ℤ y))) by ap int-ℕ (bezouts-lemma-refactor-hypotheses x y H K) = (s *ℤ x) -ℤ (t *ℤ y) by int-abs-is-nonnegative-ℤ ((s *ℤ x) -ℤ (t *ℤ y)) pos = (s *ℤ x) +ℤ ((neg-ℤ t) *ℤ y) by ap ((s *ℤ x) +ℤ_) (inv (left-negative-law-mul-ℤ t y))) pr1 (sx-ty-nonneg-case-split (inr neg)) = neg-ℤ s pr1 (pr2 (sx-ty-nonneg-case-split (inr neg))) = t pr2 (pr2 (sx-ty-nonneg-case-split (inr neg))) = inv ( equational-reasoning gcd-ℤ x y = int-ℕ (abs-ℤ ((s *ℤ x) -ℤ (t *ℤ y))) by ap int-ℕ (bezouts-lemma-refactor-hypotheses x y H K) = int-ℕ (abs-ℤ (neg-ℤ ((s *ℤ x) -ℤ (t *ℤ y)))) by ap (int-ℕ) (inv (abs-neg-ℤ ((s *ℤ x) -ℤ (t *ℤ y)))) = neg-ℤ ((s *ℤ x) -ℤ (t *ℤ y)) by int-abs-is-nonnegative-ℤ ( neg-ℤ ((s *ℤ x) -ℤ (t *ℤ y))) ( neg) = (neg-ℤ (s *ℤ x)) +ℤ (neg-ℤ (neg-ℤ (t *ℤ y))) by distributive-neg-add-ℤ (s *ℤ x) (neg-ℤ (t *ℤ y)) = ((neg-ℤ s) *ℤ x) +ℤ (neg-ℤ (neg-ℤ (t *ℤ y))) by ap (_+ℤ (neg-ℤ (neg-ℤ (t *ℤ y)))) (inv (left-negative-law-mul-ℤ s x)) = ((neg-ℤ s) *ℤ x) +ℤ (t *ℤ y) by ap (((neg-ℤ s) *ℤ x) +ℤ_) (neg-neg-ℤ (t *ℤ y))) bezouts-lemma-ℤ : (x y : ℤ) → Σ ℤ (λ s → Σ ℤ (λ t → (s *ℤ x) +ℤ (t *ℤ y) = gcd-ℤ x y)) bezouts-lemma-ℤ (inl x) (inl y) = pair (neg-ℤ s) (pair (neg-ℤ t) eqn) where pos-bezout : Σ ( ℤ) ( λ s → Σ ( ℤ) ( λ t → ( (s *ℤ (inr (inr x))) +ℤ (t *ℤ (inr (inr y)))) = ( gcd-ℤ (inr (inr x)) (inr (inr y))))) pos-bezout = bezouts-lemma-pos-ints (inr (inr x)) (inr (inr y)) star star s : ℤ s = pr1 (pos-bezout) t : ℤ t = pr1 (pr2 (pos-bezout)) eqn : ((neg-ℤ s) *ℤ (inl x)) +ℤ ((neg-ℤ t) *ℤ (inl y)) = gcd-ℤ (inl x) (inl y) eqn = equational-reasoning ( (neg-ℤ s) *ℤ (neg-ℤ (inr (inr x)))) +ℤ ( (neg-ℤ t) *ℤ (neg-ℤ (inr (inr y)))) = (s *ℤ (inr (inr x))) +ℤ ((neg-ℤ t) *ℤ (neg-ℤ (inr (inr y)))) by ( ap ( _+ℤ ((neg-ℤ t) *ℤ (neg-ℤ (inr (inr y))))) ( double-negative-law-mul-ℤ s (inr (inr x)))) = (s *ℤ (inr (inr x))) +ℤ (t *ℤ (inr (inr y))) by ( ap ( (s *ℤ (inr (inr x))) +ℤ_) ( double-negative-law-mul-ℤ t (inr (inr y)))) = gcd-ℤ (inr (inr x)) (inr (inr y)) by pr2 (pr2 (pos-bezout)) = gcd-ℤ (inl x) (inr (inr y)) by ap (λ M → (int-ℕ (gcd-ℕ M (succ-ℕ y)))) (abs-neg-ℤ (inr (inr x))) = gcd-ℤ (inl x) (inl y) by ap (λ M → (int-ℕ (gcd-ℕ (succ-ℕ x) M))) (abs-neg-ℤ (inr (inr y))) bezouts-lemma-ℤ (inl x) (inr (inl star)) = pair neg-one-ℤ (pair one-ℤ eqn) where eqn : (neg-one-ℤ *ℤ (inl x)) +ℤ (one-ℤ *ℤ (inr (inl star))) = gcd-ℤ (inl x) (inr (inl star)) eqn = equational-reasoning (neg-one-ℤ *ℤ (inl x)) +ℤ (one-ℤ *ℤ (inr (inl star))) = (inr (inr x)) +ℤ (one-ℤ *ℤ (inr (inl star))) by ap ( _+ℤ (one-ℤ *ℤ (inr (inl star)))) ( left-neg-unit-law-mul-ℤ (inl x)) = (inr (inr x)) +ℤ zero-ℤ by ap ((inr (inr x)) +ℤ_) (right-zero-law-mul-ℤ one-ℤ) = int-ℕ (abs-ℤ (inl x)) by right-unit-law-add-ℤ (inr (inr x)) = gcd-ℤ (inl x) zero-ℤ by inv (is-id-is-gcd-zero-ℤ' {inl x} {gcd-ℤ (inl x) zero-ℤ} refl) bezouts-lemma-ℤ (inl x) (inr (inr y)) = pair (neg-ℤ s) (pair t eqn) where pos-bezout : Σ ( ℤ) ( λ s → Σ ( ℤ) ( λ t → (s *ℤ (inr (inr x))) +ℤ (t *ℤ (inr (inr y))) = gcd-ℤ (inr (inr x)) (inr (inr y)))) pos-bezout = bezouts-lemma-pos-ints (inr (inr x)) (inr (inr y)) star star s : ℤ s = pr1 (pos-bezout) t : ℤ t = pr1 (pr2 (pos-bezout)) eqn : ((neg-ℤ s) *ℤ (inl x)) +ℤ (t *ℤ (inr (inr y))) = gcd-ℤ (inl x) (inr (inr y)) eqn = equational-reasoning ((neg-ℤ s) *ℤ (neg-ℤ (inr (inr x)))) +ℤ (t *ℤ (inr (inr y))) = (s *ℤ (inr (inr x))) +ℤ (t *ℤ (inr (inr y))) by ap (_+ℤ (t *ℤ (inr (inr y)))) (double-negative-law-mul-ℤ s (inr (inr x))) = gcd-ℤ (inr (inr x)) (inr (inr y)) by pr2 (pr2 (pos-bezout)) = gcd-ℤ (inl x) (inr (inr y)) by ap (λ M → (int-ℕ (gcd-ℕ M (succ-ℕ y)))) (abs-neg-ℤ (inr (inr x))) bezouts-lemma-ℤ (inr (inl star)) (inl y) = pair one-ℤ (pair neg-one-ℤ eqn) where eqn : (one-ℤ *ℤ (inr (inl star))) +ℤ (neg-one-ℤ *ℤ (inl y)) = gcd-ℤ (inr (inl star)) (inl y) eqn = equational-reasoning (one-ℤ *ℤ (inr (inl star))) +ℤ (neg-one-ℤ *ℤ (inl y)) = (one-ℤ *ℤ (inr (inl star))) +ℤ (inr (inr y)) by ap ( (one-ℤ *ℤ (inr (inl star))) +ℤ_) ( left-neg-unit-law-mul-ℤ (inl y)) = zero-ℤ +ℤ (inr (inr y)) by ap (_+ℤ (inr (inr y))) (right-zero-law-mul-ℤ one-ℤ) = int-ℕ (abs-ℤ (inl y)) by left-unit-law-add-ℤ (inr (inr y)) = gcd-ℤ zero-ℤ (inl y) by inv (is-id-is-gcd-zero-ℤ {inl y} {gcd-ℤ zero-ℤ (inl y)} refl) bezouts-lemma-ℤ (inr (inl star)) (inr (inl star)) = pair one-ℤ (pair one-ℤ eqn) where eqn : (one-ℤ *ℤ (inr (inl star))) +ℤ (one-ℤ *ℤ (inr (inl star))) = gcd-ℤ zero-ℤ zero-ℤ eqn = equational-reasoning (one-ℤ *ℤ (inr (inl star))) +ℤ (one-ℤ *ℤ (inr (inl star))) = zero-ℤ +ℤ (one-ℤ *ℤ (inr (inl star))) by ap ( _+ℤ (one-ℤ *ℤ (inr (inl star)))) ( right-zero-law-mul-ℤ one-ℤ) = zero-ℤ +ℤ zero-ℤ by ap (zero-ℤ +ℤ_) (right-zero-law-mul-ℤ one-ℤ) = gcd-ℤ zero-ℤ zero-ℤ by inv (is-zero-gcd-ℤ zero-ℤ zero-ℤ refl refl) bezouts-lemma-ℤ (inr (inl star)) (inr (inr y)) = pair one-ℤ (pair one-ℤ eqn) where eqn : (one-ℤ *ℤ (inr (inl star))) +ℤ (one-ℤ *ℤ (inr (inr y))) = gcd-ℤ (inr (inl star)) (inr (inr y)) eqn = equational-reasoning (one-ℤ *ℤ (inr (inl star))) +ℤ (one-ℤ *ℤ (inr (inr y))) = (one-ℤ *ℤ (inr (inl star))) +ℤ (inr (inr y)) by ap ( (one-ℤ *ℤ (inr (inl star))) +ℤ_) ( inv (left-unit-law-mul-ℤ (inr (inr y)))) = zero-ℤ +ℤ (inr (inr y)) by ap (_+ℤ (inr (inr y))) (right-zero-law-mul-ℤ one-ℤ) = int-ℕ (abs-ℤ (inr (inr y))) by left-unit-law-add-ℤ (inr (inr y)) = gcd-ℤ zero-ℤ (inr (inr y)) by inv ( is-id-is-gcd-zero-ℤ { inr (inr y)} { gcd-ℤ zero-ℤ (inr (inr y))} ( refl)) bezouts-lemma-ℤ (inr (inr x)) (inl y) = pair s (pair (neg-ℤ t) eqn) where pos-bezout : Σ ( ℤ) ( λ s → Σ ( ℤ) ( λ t → (s *ℤ (inr (inr x))) +ℤ (t *ℤ (inr (inr y))) = gcd-ℤ (inr (inr x)) (inr (inr y)))) pos-bezout = bezouts-lemma-pos-ints (inr (inr x)) (inr (inr y)) star star s : ℤ s = pr1 (pos-bezout) t : ℤ t = pr1 (pr2 (pos-bezout)) eqn : (s *ℤ (inr (inr x))) +ℤ ((neg-ℤ t) *ℤ (inl y)) = gcd-ℤ (inr (inr x)) (inl y) eqn = equational-reasoning (s *ℤ (inr (inr x))) +ℤ ((neg-ℤ t) *ℤ (neg-ℤ (inr (inr y)))) = (s *ℤ (inr (inr x))) +ℤ (t *ℤ (inr (inr y))) by ap ((s *ℤ (inr (inr x))) +ℤ_) (double-negative-law-mul-ℤ t (inr (inr y))) = gcd-ℤ (inr (inr x)) (inr (inr y)) by pr2 (pr2 (pos-bezout)) = gcd-ℤ (inr (inr x)) (inl y) by ap (λ M → (int-ℕ (gcd-ℕ (succ-ℕ x) M))) (abs-neg-ℤ (inr (inr y))) bezouts-lemma-ℤ (inr (inr x)) (inr (inl star)) = pair one-ℤ (pair one-ℤ eqn) where eqn : (one-ℤ *ℤ (inr (inr x))) +ℤ (one-ℤ *ℤ (inr (inl star))) = gcd-ℤ (inr (inr x)) (inr (inl star)) eqn = equational-reasoning (one-ℤ *ℤ (inr (inr x))) +ℤ (one-ℤ *ℤ (inr (inl star))) = (inr (inr x)) +ℤ (one-ℤ *ℤ (inr (inl star))) by ap ( _+ℤ (one-ℤ *ℤ (inr (inl star)))) ( left-unit-law-mul-ℤ (inr (inr x))) = (inr (inr x)) +ℤ zero-ℤ by ap ((inr (inr x)) +ℤ_) (right-zero-law-mul-ℤ one-ℤ) = int-ℕ (abs-ℤ (inr (inr x))) by right-unit-law-add-ℤ (inr (inr x)) = gcd-ℤ (inr (inr x)) zero-ℤ by inv ( is-id-is-gcd-zero-ℤ' { inr (inr x)} { gcd-ℤ (inr (inr x)) zero-ℤ} ( refl)) bezouts-lemma-ℤ (inr (inr x)) (inr (inr y)) = bezouts-lemma-pos-ints (inr (inr x)) (inr (inr y)) star star
Now that Bezout’s Lemma has been established, we establish a few corollaries of Bezout.
If x | y z
and gcd-Z x y = 1
, then x | z
div-right-factor-coprime-ℤ : (x y z : ℤ) → (div-ℤ x (y *ℤ z)) → (gcd-ℤ x y = one-ℤ) → div-ℤ x z div-right-factor-coprime-ℤ x y z H K = pair ((s *ℤ z) +ℤ (t *ℤ k)) eqn where bezout-triple : Σ ℤ (λ s → Σ ℤ (λ t → (s *ℤ x) +ℤ (t *ℤ y) = gcd-ℤ x y)) bezout-triple = bezouts-lemma-ℤ x y s : ℤ s = pr1 bezout-triple t : ℤ t = pr1 (pr2 bezout-triple) bezout-eqn : (s *ℤ x) +ℤ (t *ℤ y) = gcd-ℤ x y bezout-eqn = pr2 (pr2 bezout-triple) k : ℤ k = pr1 H div-yz : k *ℤ x = y *ℤ z div-yz = pr2 H eqn : ((s *ℤ z) +ℤ (t *ℤ k)) *ℤ x = z eqn = equational-reasoning ((s *ℤ z) +ℤ (t *ℤ k)) *ℤ x = ((s *ℤ z) *ℤ x) +ℤ ((t *ℤ k) *ℤ x) by right-distributive-mul-add-ℤ (s *ℤ z) (t *ℤ k) x = ((s *ℤ x) *ℤ z) +ℤ ((t *ℤ k) *ℤ x) by ap (_+ℤ ((t *ℤ k) *ℤ x)) ( equational-reasoning (s *ℤ z) *ℤ x = s *ℤ (z *ℤ x) by associative-mul-ℤ s z x = s *ℤ (x *ℤ z) by ap (s *ℤ_) (commutative-mul-ℤ z x) = (s *ℤ x) *ℤ z by inv (associative-mul-ℤ s x z)) = ((s *ℤ x) *ℤ z) +ℤ ((t *ℤ y) *ℤ z) by ap (((s *ℤ x) *ℤ z) +ℤ_) ( equational-reasoning (t *ℤ k) *ℤ x = t *ℤ (k *ℤ x) by associative-mul-ℤ t k x = t *ℤ (y *ℤ z) by ap (t *ℤ_) div-yz = (t *ℤ y) *ℤ z by inv (associative-mul-ℤ t y z)) = ((s *ℤ x) +ℤ (t *ℤ y)) *ℤ z by inv (right-distributive-mul-add-ℤ (s *ℤ x) (t *ℤ y) z) = one-ℤ *ℤ z by ap (_*ℤ z) (bezout-eqn ∙ K) = z by left-unit-law-mul-ℤ z div-right-factor-coprime-ℕ : (x y z : ℕ) → (div-ℕ x (y *ℕ z)) → (gcd-ℕ x y = 1) → div-ℕ x z div-right-factor-coprime-ℕ x y z H K = div-div-int-ℕ ( div-right-factor-coprime-ℤ ( int-ℕ x) ( int-ℕ y) ( int-ℕ z) ( tr (div-ℤ (int-ℕ x)) (inv (mul-int-ℕ y z)) (div-int-div-ℕ H)) ( eq-gcd-gcd-int-ℕ x y ∙ ap int-ℕ K))
References
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
Recent changes
- 2024-10-29. Egbert Rijke. Linked names (#1216).
- 2024-10-28. Egbert Rijke. Formula for the number of combinations (#1213).
- 2024-04-09. malarbol and Fredrik Bakke. The additive group of rational numbers (#1100).
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017).