Diagonal matrices on rings

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke, Louis Wasserman and Eléonore Mangel.

Created on 2022-03-24.
Last modified on 2025-05-14.

module linear-algebra.diagonal-matrices-on-rings where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.universe-levels

open import linear-algebra.constant-tuples
open import linear-algebra.matrices-on-rings
open import linear-algebra.tuples-on-rings

open import lists.functoriality-tuples
open import lists.tuples

open import ring-theory.rings

Definitions

A diagonal matrix is a matrix whose only nonzero elements are on the diagonal of the matrix.

Diagonal matrices

module _
  {l : Level} (R : Ring l)
  where

  diagonal-matrix-Ring : (n : )  tuple-Ring R n  matrix-Ring R n n
  diagonal-matrix-Ring zero-ℕ v = empty-tuple
  diagonal-matrix-Ring (succ-ℕ n) (x  v) =
    ( x  zero-tuple-Ring R) 
    ( map-tuple  v'  zero-Ring R  v') (diagonal-matrix-Ring n v))

Scalar matrices

module _
  {l : Level} (R : Ring l)
  where

  scalar-matrix-Ring : (n : )  type-Ring R  matrix-Ring R n n
  scalar-matrix-Ring n x = diagonal-matrix-Ring R n (constant-tuple x)

  identity-matrix-Ring : (n : )  matrix-Ring R n n
  identity-matrix-Ring n = scalar-matrix-Ring n (one-Ring R)

Recent changes