Free concrete group actions
Content created by Egbert Rijke, Jonathan Prieto-Cubides and Fredrik Bakke.
Created on 2022-07-09.
Last modified on 2023-11-24.
module group-theory.free-concrete-group-actions where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.concrete-group-actions open import group-theory.concrete-groups open import higher-group-theory.free-higher-group-actions
Idea
Consider a concrete group G
and a
concrete group action of G
on X
.
We say that X
is free if its type of
orbits is a
set.
Equivalently, we say that X
is
abstractly free if for any element x : X (sh G)
of the underlying type of
X
the action map
g ↦ mul-action-Concrete-Group G X g x
is an embedding.
Definition
The predicate of being a free concrete group action
module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where is-free-prop-action-Concrete-Group : Prop (l1 ⊔ l2) is-free-prop-action-Concrete-Group = is-free-prop-action-∞-Group (∞-group-Concrete-Group G) (type-Set ∘ X) is-free-action-Concrete-Group : UU (l1 ⊔ l2) is-free-action-Concrete-Group = is-free-action-∞-Group (∞-group-Concrete-Group G) (type-Set ∘ X) is-prop-is-free-action-Concrete-Group : is-prop is-free-action-Concrete-Group is-prop-is-free-action-Concrete-Group = is-prop-is-free-action-∞-Group (∞-group-Concrete-Group G) (type-Set ∘ X)
The predicate of being an abstractly free concrete group action
module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where is-abstractly-free-prop-action-Concrete-Group : Prop (l1 ⊔ l2) is-abstractly-free-prop-action-Concrete-Group = is-abstractly-free-prop-action-∞-Group ( ∞-group-Concrete-Group G) ( type-Set ∘ X) is-abstractly-free-action-Concrete-Group : UU (l1 ⊔ l2) is-abstractly-free-action-Concrete-Group = is-abstractly-free-action-∞-Group ( ∞-group-Concrete-Group G) ( type-Set ∘ X) is-prop-is-abstractly-free-action-Concrete-Group : is-prop is-abstractly-free-action-Concrete-Group is-prop-is-abstractly-free-action-Concrete-Group = is-prop-is-abstractly-free-action-∞-Group ( ∞-group-Concrete-Group G) ( type-Set ∘ X)
Free concrete group actions
free-action-Concrete-Group : {l1 : Level} (l2 : Level) → Concrete-Group l1 → UU (l1 ⊔ lsuc l2) free-action-Concrete-Group l2 G = Σ (action-Concrete-Group l2 G) (is-free-action-Concrete-Group G)
Properties
A concrete group action is free if and only if it is abstractly free
module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where is-abstractly-free-is-free-action-Concrete-Group : is-free-action-Concrete-Group G X → is-abstractly-free-action-Concrete-Group G X is-abstractly-free-is-free-action-Concrete-Group = is-abstractly-free-is-free-action-∞-Group ( ∞-group-Concrete-Group G) ( type-Set ∘ X) is-free-is-abstractly-free-action-Concrete-Group : is-abstractly-free-action-Concrete-Group G X → is-free-action-Concrete-Group G X is-free-is-abstractly-free-action-Concrete-Group = is-free-is-abstractly-free-action-∞-Group ( ∞-group-Concrete-Group G) ( type-Set ∘ X)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-03. Egbert Rijke and Fredrik Bakke. Free and transitive concrete group actions (#810).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).