Square roots of positive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.square-roots-positive-rational-numbers where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.maximum-rational-numbers open import elementary-number-theory.minimum-positive-rational-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.squares-rational-numbers open import elementary-number-theory.strict-inequality-positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.transport-along-identifications open import order-theory.posets
Idea
This file expresses bounds and properties of bounds on square roots¶ of positive rational numbers.
Properties
For any positive rational number q
, there is a positive rational number p
with p² < q
module _ (q : ℚ⁺) where abstract bound-square-le-ℚ⁺ : Σ ℚ⁺ (λ p → le-ℚ⁺ (p *ℚ⁺ p) q) bound-square-le-ℚ⁺ = trichotomy-le-ℚ (rational-ℚ⁺ q) one-ℚ ( λ q<1 → (q , le-left-mul-less-than-one-ℚ⁺ q q<1 q)) ( λ q=1 → let p = mediant-zero-ℚ⁺ one-ℚ⁺ p<1 = le-mediant-zero-ℚ⁺ one-ℚ⁺ in ( p , inv-tr ( le-ℚ⁺ (p *ℚ⁺ p)) ( eq-ℚ⁺ q=1) ( transitive-le-ℚ _ _ _ ( p<1) ( le-right-mul-less-than-one-ℚ⁺ p p<1 p)))) ( λ 1<q → ( one-ℚ⁺ , inv-tr (λ p → le-ℚ⁺ p q) (left-unit-law-mul-ℚ⁺ one-ℚ⁺) 1<q)) square-le-ℚ⁺ : exists ℚ⁺ (λ p → le-prop-ℚ⁺ (p *ℚ⁺ p) q) square-le-ℚ⁺ = unit-trunc-Prop bound-square-le-ℚ⁺
For any positive rational number q
, there is a positive rational number p
with q < p²
module _ (q : ℚ⁺) where abstract bound-square-le-ℚ⁺' : Σ ℚ⁺ (λ p → le-ℚ⁺ q (p *ℚ⁺ p)) bound-square-le-ℚ⁺' = trichotomy-le-ℚ (rational-ℚ⁺ q) one-ℚ ( λ q<1 → ( one-ℚ⁺ , inv-tr (le-ℚ⁺ q) (right-unit-law-mul-ℚ⁺ one-ℚ⁺) q<1)) ( λ q=1 → ( positive-rational-ℕ⁺ (2 , λ ()) , binary-tr ( le-ℚ) ( inv q=1) ( inv (mul-rational-ℕ 2 2)) ( preserves-le-rational-ℕ 1 4 _))) ( λ 1<q → ( q , le-left-mul-greater-than-one-ℚ⁺ q 1<q q)) square-le-ℚ⁺' : exists ℚ⁺ (λ p → le-prop-ℚ⁺ q (p *ℚ⁺ p)) square-le-ℚ⁺' = unit-trunc-Prop bound-square-le-ℚ⁺'
For any positive rational numbers p
and q
, if p² < q
, then there is an r
with p < r
and r² < q
abstract bound-rounded-below-square-le-ℚ⁺ : (p q : ℚ⁺) → le-ℚ⁺ (p *ℚ⁺ p) q → Σ ℚ⁺ (λ r → le-ℚ⁺ p r × le-ℚ⁺ (r *ℚ⁺ r) q) bound-rounded-below-square-le-ℚ⁺ p⁺@(p , _) q⁺@(q , _) p²<q = let (δ₁⁺@(δ₁ , _) , δ₁+δ₁<⟨q-p²⟩/p) = bound-double-le-ℚ⁺ (positive-diff-le-ℚ (p *ℚ p) q p²<q *ℚ⁺ inv-ℚ⁺ p⁺) (δ₂⁺@(δ₂ , _) , δ₂+δ₂<δ₁) = bound-double-le-ℚ⁺ δ₁⁺ δ₃⁺@(δ₃ , _) = min-ℚ⁺ δ₂⁺ p⁺ δ₂<δ₁ : le-ℚ δ₂ δ₁ δ₂<δ₁ = transitive-le-ℚ δ₂ (δ₂ +ℚ δ₂) δ₁ ( δ₂+δ₂<δ₁) ( le-right-add-rational-ℚ⁺ δ₂ δ₂⁺) δ₃≤δ₂ : leq-ℚ δ₃ δ₂ δ₃≤δ₂ = leq-left-min-ℚ⁺ _ _ open inequality-reasoning-Poset ℚ-Poset in ( p⁺ +ℚ⁺ δ₃⁺ , le-right-add-rational-ℚ⁺ p δ₃⁺ , concatenate-leq-le-ℚ ( (p +ℚ δ₃) *ℚ (p +ℚ δ₃)) ( p *ℚ p +ℚ (δ₁ +ℚ δ₁) *ℚ p) ( q) ( chain-of-inequalities (p +ℚ δ₃) *ℚ (p +ℚ δ₃) ≤ (p +ℚ δ₃) *ℚ p +ℚ (p +ℚ δ₃) *ℚ δ₃ by leq-eq-ℚ _ _ (left-distributive-mul-add-ℚ (p +ℚ δ₃) p δ₃) ≤ (p +ℚ δ₃) *ℚ p +ℚ ((p *ℚ δ₃) +ℚ (δ₃ *ℚ δ₃)) by leq-eq-ℚ _ _ ( ap-add-ℚ refl (right-distributive-mul-add-ℚ _ _ _)) ≤ (p +ℚ δ₃) *ℚ p +ℚ ((δ₃ *ℚ p) +ℚ (δ₃ *ℚ p)) by preserves-leq-right-add-ℚ _ _ _ ( preserves-leq-add-ℚ ( leq-eq-ℚ _ _ (commutative-mul-ℚ _ _)) ( preserves-leq-left-mul-ℚ⁺ ( δ₃⁺) ( δ₃) ( p) ( leq-right-min-ℚ⁺ _ _))) ≤ (p +ℚ (δ₃ +ℚ δ₃ +ℚ δ₃)) *ℚ p by leq-eq-ℚ _ _ ( equational-reasoning (p +ℚ δ₃) *ℚ p +ℚ (δ₃ *ℚ p +ℚ δ₃ *ℚ p) = (p +ℚ δ₃) *ℚ p +ℚ (δ₃ +ℚ δ₃) *ℚ p by ap-add-ℚ refl (inv (right-distributive-mul-add-ℚ _ _ _)) = ((p +ℚ δ₃) +ℚ (δ₃ +ℚ δ₃)) *ℚ p by inv (right-distributive-mul-add-ℚ _ _ _) = (p +ℚ (δ₃ +ℚ (δ₃ +ℚ δ₃))) *ℚ p by ap-mul-ℚ (associative-add-ℚ _ _ _) refl = (p +ℚ (δ₃ +ℚ δ₃ +ℚ δ₃)) *ℚ p by ap-mul-ℚ ( ap-add-ℚ refl (inv (associative-add-ℚ _ _ _))) ( refl)) ≤ (p +ℚ (δ₂ +ℚ δ₂ +ℚ δ₂)) *ℚ p by preserves-leq-right-mul-ℚ⁺ p⁺ _ _ ( preserves-leq-right-add-ℚ p _ _ ( preserves-leq-add-ℚ ( preserves-leq-add-ℚ δ₃≤δ₂ δ₃≤δ₂) ( δ₃≤δ₂))) ≤ (p +ℚ (δ₁ +ℚ δ₁)) *ℚ p by preserves-leq-right-mul-ℚ⁺ p⁺ _ _ ( preserves-leq-right-add-ℚ p _ _ ( preserves-leq-add-ℚ ( leq-le-ℚ δ₂+δ₂<δ₁) ( leq-le-ℚ δ₂<δ₁))) ≤ p *ℚ p +ℚ (δ₁ +ℚ δ₁) *ℚ p by leq-eq-ℚ _ _ (right-distributive-mul-add-ℚ _ _ _)) ( tr ( le-ℚ (p *ℚ p +ℚ (δ₁ +ℚ δ₁) *ℚ p)) ( equational-reasoning p *ℚ p +ℚ ((q -ℚ p *ℚ p) *ℚ rational-inv-ℚ⁺ p⁺) *ℚ p = p *ℚ p +ℚ (q -ℚ p *ℚ p) by ap-add-ℚ ( refl) ( ap ( rational-ℚ⁺) ( is-section-right-div-ℚ⁺ ( p⁺) ( positive-diff-le-ℚ _ _ p²<q))) = q by is-identity-right-conjugation-add-ℚ (p *ℚ p) q) ( preserves-le-right-add-ℚ (p *ℚ p) _ _ ( preserves-le-right-mul-ℚ⁺ p⁺ _ _ δ₁+δ₁<⟨q-p²⟩/p)))) rounded-below-square-le-ℚ⁺ : (p q : ℚ⁺) → le-ℚ⁺ (p *ℚ⁺ p) q → exists ℚ⁺ (λ r → le-prop-ℚ⁺ p r ∧ le-prop-ℚ⁺ (r *ℚ⁺ r) q) rounded-below-square-le-ℚ⁺ p q p²<q = unit-trunc-Prop (bound-rounded-below-square-le-ℚ⁺ p q p²<q)
For any positive rational numbers p
and q
, if q < p²
, then there is an r
with r < p
and q < r²
abstract bound-rounded-above-square-le-ℚ⁺ : (p q : ℚ⁺) → le-ℚ⁺ q (p *ℚ⁺ p) → Σ ℚ⁺ (λ r → le-ℚ⁺ r p × le-ℚ⁺ q (r *ℚ⁺ r)) bound-rounded-above-square-le-ℚ⁺ p⁺@(p , _) q⁺@(q , _) q<p² = let (δ⁺@(δ , _) , δ+δ<⟨p²-q⟩/p) = bound-double-le-ℚ⁺ ( positive-diff-le-ℚ _ _ q<p² *ℚ⁺ inv-ℚ⁺ p⁺) δ<p = transitive-le-ℚ δ (δ +ℚ δ) p ( transitive-le-ℚ ( δ +ℚ δ) ( (p *ℚ p -ℚ q) *ℚ rational-inv-ℚ⁺ p⁺) ( p) ( tr ( le-ℚ _) ( ap rational-ℚ⁺ (is-retraction-right-div-ℚ⁺ p⁺ p⁺)) ( preserves-le-right-mul-ℚ⁺ (inv-ℚ⁺ p⁺) _ _ ( le-diff-rational-ℚ⁺ (p *ℚ p) q⁺))) ( δ+δ<⟨p²-q⟩/p)) ( le-right-add-rational-ℚ⁺ δ δ⁺) in ( positive-diff-le-ℚ _ _ δ<p , le-diff-rational-ℚ⁺ p δ⁺ , transitive-le-ℚ ( q) ( p *ℚ p -ℚ (δ +ℚ δ) *ℚ p) ( square-ℚ (p -ℚ δ)) ( inv-tr ( le-ℚ _) ( equational-reasoning square-ℚ (p -ℚ δ) = square-ℚ p -ℚ rational-ℕ 2 *ℚ (p *ℚ δ) +ℚ square-ℚ δ by square-diff-ℚ p δ = square-ℚ p -ℚ p *ℚ (rational-ℕ 2 *ℚ δ) +ℚ square-ℚ δ by ap-add-ℚ (ap-diff-ℚ refl (left-swap-mul-ℚ _ _ _)) refl = square-ℚ p -ℚ p *ℚ (δ +ℚ δ) +ℚ square-ℚ δ by ap-add-ℚ (ap-diff-ℚ refl (ap-mul-ℚ refl (mul-two-ℚ δ))) refl = square-ℚ p -ℚ (δ +ℚ δ) *ℚ p +ℚ square-ℚ δ by ap-add-ℚ (ap-diff-ℚ refl (commutative-mul-ℚ _ _)) refl) ( le-right-add-rational-ℚ⁺ _ (δ⁺ *ℚ⁺ δ⁺))) ( binary-tr ( le-ℚ) ( ( ap-add-ℚ refl (distributive-neg-diff-ℚ _ _)) ∙ ( is-identity-right-conjugation-add-ℚ (p *ℚ p) q)) ( refl) ( preserves-le-right-add-ℚ (p *ℚ p) _ _ ( neg-le-ℚ _ _ ( tr ( le-ℚ _) ( ap ( rational-ℚ⁺) ( is-section-right-div-ℚ⁺ p⁺ (positive-diff-le-ℚ _ _ q<p²))) ( preserves-le-right-mul-ℚ⁺ p⁺ _ _ δ+δ<⟨p²-q⟩/p)))))) rounded-above-square-le-ℚ⁺ : (p q : ℚ⁺) → le-ℚ⁺ q (p *ℚ⁺ p) → exists ℚ⁺ (λ r → le-prop-ℚ⁺ r p ∧ le-prop-ℚ⁺ q (r *ℚ⁺ r)) rounded-above-square-le-ℚ⁺ p q p²<q = unit-trunc-Prop (bound-rounded-above-square-le-ℚ⁺ p q p²<q)
Recent changes
- 2025-10-11. Louis Wasserman. Square roots of nonnegative real numbers (#1570).