The law of excluded middle
Content created by Louis Wasserman.
Created on 2026-02-05.
Last modified on 2026-02-05.
module foundation-core.law-of-excluded-middle where
Imports
open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.decidable-propositions open import foundation-core.negation open import foundation-core.propositions
Idea
The
law of excluded middle¶
asserts that any proposition P is
decidable.
Definition
level-LEM : (l : Level) → UU (lsuc l) level-LEM l = (P : Prop l) → is-decidable (type-Prop P) LEM : UUω LEM = {l : Level} → level-LEM l prop-level-LEM : (l : Level) → Prop (lsuc l) prop-level-LEM l = Π-Prop (Prop l) (is-decidable-Prop)
Properties
Given LEM, we obtain a map from the type of propositions to the type of decidable propositions
decidable-prop-Prop : {l : Level} → level-LEM l → Prop l → Decidable-Prop l pr1 (decidable-prop-Prop lem P) = type-Prop P pr1 (pr2 (decidable-prop-Prop lem P)) = is-prop-type-Prop P pr2 (pr2 (decidable-prop-Prop lem P)) = lem P
External links
- Principle of excluded middle at Wikidata
Recent changes
- 2026-02-05. Louis Wasserman. The classical intermediate value theorem (#1801).