Unit fractions in the rational numbers types
Content created by Louis Wasserman, malarbol and Garrett Figueroa.
Created on 2025-03-01.
Last modified on 2025-08-11.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.unit-fractions-rational-numbers where
Imports
open import elementary-number-theory.archimedean-property-positive-rational-numbers open import elementary-number-theory.inequality-integers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonzero-natural-numbers open import elementary-number-theory.positive-integers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-integers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.subtypes open import group-theory.groups
Idea
The unit fractions¶ are rational numbers whose numerator is 1 and whose denominator is a positive integer (or, equivalently, a positive natural number).
Definitions
Reciprocals of nonzero natural numbers
positive-reciprocal-rational-ℕ⁺ : ℕ⁺ → ℚ⁺ positive-reciprocal-rational-ℕ⁺ n = inv-ℚ⁺ (positive-rational-ℕ⁺ n) reciprocal-rational-ℕ⁺ : ℕ⁺ → ℚ reciprocal-rational-ℕ⁺ n = rational-ℚ⁺ (positive-reciprocal-rational-ℕ⁺ n) positive-reciprocal-rational-succ-ℕ : ℕ → ℚ⁺ positive-reciprocal-rational-succ-ℕ n = positive-reciprocal-rational-ℕ⁺ (succ-nonzero-ℕ' n) reciprocal-rational-succ-ℕ : ℕ → ℚ reciprocal-rational-succ-ℕ n = reciprocal-rational-ℕ⁺ (succ-nonzero-ℕ' n)
Reciprocals of positive integers
positive-reciprocal-rational-ℤ⁺ : ℤ⁺ → ℚ⁺ positive-reciprocal-rational-ℤ⁺ k = inv-ℚ⁺ (positive-rational-ℤ⁺ k) reciprocal-rational-ℤ⁺ : ℤ⁺ → ℚ reciprocal-rational-ℤ⁺ k = rational-ℚ⁺ (positive-reciprocal-rational-ℤ⁺ k)
Properties
The numerator of a unit fraction is one
opaque unfolding eq-numerator-inv-denominator-ℚ⁺ eq-numerator-reciprocal-rational-ℤ⁺ : (k : ℤ⁺) → numerator-ℚ (reciprocal-rational-ℤ⁺ k) = one-ℤ eq-numerator-reciprocal-rational-ℤ⁺ k = eq-numerator-inv-denominator-ℚ⁺ ( positive-rational-ℕ⁺ (positive-nat-ℤ⁺ k))
The denominator of the reciprocal of k
is k
module _ (k : ℤ⁺) where abstract eq-denominator-reciprocal-rational-ℤ⁺ : denominator-ℚ (reciprocal-rational-ℤ⁺ k) = int-positive-ℤ k eq-denominator-reciprocal-rational-ℤ⁺ = eq-denominator-inv-numerator-ℚ⁺ (positive-rational-ℤ⁺ k) eq-positive-denominator-reciprocal-rational-ℤ⁺ : positive-denominator-ℚ (reciprocal-rational-ℤ⁺ k) = k eq-positive-denominator-reciprocal-rational-ℤ⁺ = eq-type-subtype ( subtype-positive-ℤ) ( eq-denominator-reciprocal-rational-ℤ⁺)
If m ≤ n
, the reciprocal of n
is less than or equal to the reciprocal of n
opaque unfolding inv-ℚ⁺ unfolding leq-ℚ-Prop leq-reciprocal-rational-ℕ⁺ : (m n : ℕ⁺) → leq-ℕ⁺ m n → leq-ℚ (reciprocal-rational-ℕ⁺ n) (reciprocal-rational-ℕ⁺ m) leq-reciprocal-rational-ℕ⁺ (m , pos-m) (n , pos-n) m≤n = binary-tr ( leq-ℤ) ( left-unit-law-mul-ℤ (int-ℕ m)) ( left-unit-law-mul-ℤ (int-ℕ n)) ( leq-int-ℕ m n m≤n)
If m < n
, the reciprocal of n
is less than the reciprocal of n
opaque unfolding inv-ℚ⁺ unfolding le-ℚ-Prop le-reciprocal-rational-ℕ⁺ : (m n : ℕ⁺) → le-ℕ⁺ m n → le-ℚ⁺ ( positive-reciprocal-rational-ℕ⁺ n) ( positive-reciprocal-rational-ℕ⁺ m) le-reciprocal-rational-ℕ⁺ (m , pos-m) (n , pos-n) m<n = binary-tr ( le-ℤ) ( left-unit-law-mul-ℤ (int-ℕ m)) ( left-unit-law-mul-ℤ (int-ℕ n)) ( le-natural-le-ℤ m n m<n)
For every positive rational number, there is a smaller unit fraction
smaller-reciprocal-ℚ⁺ : (q : ℚ⁺) → Σ ℕ⁺ (λ n → le-ℚ⁺ (positive-reciprocal-rational-ℕ⁺ n) q) smaller-reciprocal-ℚ⁺ q⁺@(q , _) = tot ( λ n⁺ 1<nq → binary-tr ( le-ℚ) ( right-unit-law-mul-ℚ _) ( ap ( rational-ℚ⁺) ( is-retraction-left-div-Group ( group-mul-ℚ⁺) ( positive-rational-ℕ⁺ n⁺) ( q⁺))) ( preserves-le-left-mul-ℚ⁺ ( positive-reciprocal-rational-ℕ⁺ n⁺) ( one-ℚ) ( rational-ℚ⁺ (positive-rational-ℕ⁺ n⁺ *ℚ⁺ q⁺)) ( 1<nq))) ( bound-archimedean-property-ℚ⁺ q⁺ one-ℚ⁺)
The reciprocal of n : ℕ⁺
is a multiplicative inverse of n
module _ (n : ℕ⁺) where abstract left-inverse-law-positive-reciprocal-rational-ℕ⁺ : mul-ℚ⁺ ( positive-reciprocal-rational-ℕ⁺ n) ( positive-rational-ℕ⁺ n) = one-ℚ⁺ left-inverse-law-positive-reciprocal-rational-ℕ⁺ = left-inverse-law-mul-ℚ⁺ (positive-rational-ℕ⁺ n) left-inverse-law-reciprocal-rational-ℕ⁺ : mul-ℚ ( reciprocal-rational-ℕ⁺ n) ( rational-ℚ⁺ (positive-rational-ℕ⁺ n)) = one-ℚ left-inverse-law-reciprocal-rational-ℕ⁺ = ap rational-ℚ⁺ left-inverse-law-positive-reciprocal-rational-ℕ⁺ right-inverse-law-positive-reciprocal-rational-ℕ⁺ : mul-ℚ⁺ ( positive-rational-ℕ⁺ n) ( positive-reciprocal-rational-ℕ⁺ n) = one-ℚ⁺ right-inverse-law-positive-reciprocal-rational-ℕ⁺ = right-inverse-law-mul-ℚ⁺ (positive-rational-ℕ⁺ n) right-inverse-law-reciprocal-rational-ℕ⁺ : mul-ℚ ( rational-ℚ⁺ (positive-rational-ℕ⁺ n)) ( reciprocal-rational-ℕ⁺ n) = one-ℚ right-inverse-law-reciprocal-rational-ℕ⁺ = ap rational-ℚ⁺ right-inverse-law-positive-reciprocal-rational-ℕ⁺
The reciprocal of k : ℤ⁺
is a multiplicative inverse of k
module _ (k : ℤ⁺) where abstract left-inverse-law-positive-reciprocal-rational-ℤ⁺ : mul-ℚ⁺ ( positive-reciprocal-rational-ℤ⁺ k) ( positive-rational-ℤ⁺ k) = one-ℚ⁺ left-inverse-law-positive-reciprocal-rational-ℤ⁺ = left-inverse-law-mul-ℚ⁺ (positive-rational-ℤ⁺ k) left-inverse-law-reciprocal-rational-ℤ⁺ : mul-ℚ ( reciprocal-rational-ℤ⁺ k) ( rational-ℚ⁺ (positive-rational-ℤ⁺ k)) = one-ℚ left-inverse-law-reciprocal-rational-ℤ⁺ = ap rational-ℚ⁺ left-inverse-law-positive-reciprocal-rational-ℤ⁺ right-inverse-law-positive-reciprocal-rational-ℤ⁺ : mul-ℚ⁺ ( positive-rational-ℤ⁺ k) ( positive-reciprocal-rational-ℤ⁺ k) = one-ℚ⁺ right-inverse-law-positive-reciprocal-rational-ℤ⁺ = right-inverse-law-mul-ℚ⁺ (positive-rational-ℤ⁺ k) right-inverse-law-reciprocal-rational-ℤ⁺ : mul-ℚ ( rational-ℚ⁺ (positive-rational-ℤ⁺ k)) ( reciprocal-rational-ℤ⁺ k) = one-ℚ right-inverse-law-reciprocal-rational-ℤ⁺ = ap rational-ℚ⁺ right-inverse-law-positive-reciprocal-rational-ℤ⁺
Any rational number is the product of its numerator and the reciprocal of its denominator
module _ (x : ℚ) where abstract eq-mul-numerator-reciprocal-denominator-ℚ : mul-ℚ ( rational-ℤ (numerator-ℚ x)) ( reciprocal-rational-ℤ⁺ (positive-denominator-ℚ x)) = x eq-mul-numerator-reciprocal-denominator-ℚ = ( ap ( mul-ℚ' (reciprocal-rational-ℤ⁺ (positive-denominator-ℚ x))) ( inv (eq-numerator-mul-denominator-ℚ x))) ∙ ( associative-mul-ℚ ( x) ( rational-ℤ (denominator-ℚ x)) ( reciprocal-rational-ℤ⁺ (positive-denominator-ℚ x))) ∙ ( ap ( mul-ℚ x) ( right-inverse-law-reciprocal-rational-ℤ⁺ ( positive-denominator-ℚ x))) ∙ ( right-unit-law-mul-ℚ x) eq-mul-numerator-reciprocal-denominator-ℚ' : mul-ℚ ( reciprocal-rational-ℤ⁺ (positive-denominator-ℚ x)) ( rational-ℤ (numerator-ℚ x)) = x eq-mul-numerator-reciprocal-denominator-ℚ' = ( commutative-mul-ℚ ( reciprocal-rational-ℤ⁺ (positive-denominator-ℚ x)) ( rational-ℤ (numerator-ℚ x))) ∙ ( eq-mul-numerator-reciprocal-denominator-ℚ)
External links
- Unit fraction at Wikidata
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452). - 2025-07-25. Louis Wasserman. Make rational arithmetic opaque (#1457).
- 2025-05-27. malarbol. Zero approximations (#1424).
- 2025-03-01. Louis Wasserman. Reciprocals of nonzero natural numbers (#1345).