Retracts of types
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-09.
Last modified on 2025-01-07.
module foundation.retracts-of-types where open import foundation-core.retracts-of-types public
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-algebra open import foundation.homotopy-induction open import foundation.logical-equivalences open import foundation.structure-identity-principle open import foundation.univalence open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.contractible-types open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.torsorial-type-families
Idea
We say that a type A
is a
retract¶ of a type B
if
the types A
and B
come equipped with
retract data¶, i.e., with
maps
i r
A -----> B -----> A
such that r
is a retraction of i
, i.e.,
there is a homotopy r ∘ i ~ id
. The map i
is called the inclusion of the retract data, and the map r
is called the
underlying map of the retraction.
Properties
Characterizing equality of retracts
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where coherence-htpy-retract : (R S : A retract-of B) (I : inclusion-retract R ~ inclusion-retract S) (H : map-retraction-retract R ~ map-retraction-retract S) → UU l1 coherence-htpy-retract R S I H = ( is-retraction-map-retraction-retract R) ~ ( horizontal-concat-htpy H I ∙h is-retraction-map-retraction-retract S) htpy-retract : (R S : A retract-of B) → UU (l1 ⊔ l2) htpy-retract R S = Σ ( inclusion-retract R ~ inclusion-retract S) ( λ I → Σ ( map-retraction-retract R ~ map-retraction-retract S) ( coherence-htpy-retract R S I)) refl-htpy-retract : (R : A retract-of B) → htpy-retract R R refl-htpy-retract R = (refl-htpy , refl-htpy , refl-htpy) htpy-eq-retract : (R S : A retract-of B) → R = S → htpy-retract R S htpy-eq-retract R .R refl = refl-htpy-retract R is-torsorial-htpy-retract : (R : A retract-of B) → is-torsorial (htpy-retract R) is-torsorial-htpy-retract R = is-torsorial-Eq-structure ( is-torsorial-htpy (inclusion-retract R)) ( inclusion-retract R , refl-htpy) ( is-torsorial-Eq-structure ( is-torsorial-htpy (map-retraction-retract R)) ( map-retraction-retract R , refl-htpy) ( is-torsorial-htpy (is-retraction-map-retraction-retract R))) is-equiv-htpy-eq-retract : (R S : A retract-of B) → is-equiv (htpy-eq-retract R S) is-equiv-htpy-eq-retract R = fundamental-theorem-id (is-torsorial-htpy-retract R) (htpy-eq-retract R) extensionality-retract : (R S : A retract-of B) → (R = S) ≃ htpy-retract R S extensionality-retract R S = ( htpy-eq-retract R S , is-equiv-htpy-eq-retract R S) eq-htpy-retract : (R S : A retract-of B) → htpy-retract R S → R = S eq-htpy-retract R S = map-inv-is-equiv (is-equiv-htpy-eq-retract R S)
Characterizing equality of the total type of retracts
module _ {l1 l2 : Level} {A : UU l1} where equiv-retracts : {l3 : Level} (R : retracts l2 A) (S : retracts l3 A) → UU (l1 ⊔ l2 ⊔ l3) equiv-retracts R S = Σ ( type-retracts R ≃ type-retracts S) ( λ e → htpy-retract ( retract-retracts R) ( comp-retract (retract-retracts S) (retract-equiv e))) refl-equiv-retracts : (R : retracts l2 A) → equiv-retracts R R refl-equiv-retracts R = ( id-equiv , refl-htpy , refl-htpy , ( ( inv-htpy ( left-unit-law-left-whisker-comp ( is-retraction-map-retraction-retracts R))) ∙h ( inv-htpy-right-unit-htpy))) equiv-eq-retracts : (R S : retracts l2 A) → R = S → equiv-retracts R S equiv-eq-retracts R .R refl = refl-equiv-retracts R is-torsorial-equiv-retracts : (R : retracts l2 A) → is-torsorial (equiv-retracts R) is-torsorial-equiv-retracts R = is-torsorial-Eq-structure ( is-torsorial-equiv (type-retracts R)) ( type-retracts R , id-equiv) ( is-contr-equiv ( Σ (retract A (type-retracts R)) (htpy-retract (retract-retracts R))) ( equiv-tot ( λ S → equiv-tot ( λ I → equiv-tot ( λ J → equiv-concat-htpy' ( is-retraction-map-retraction-retracts R) ( ap-concat-htpy ( horizontal-concat-htpy J I) ( right-unit-htpy ∙h left-unit-law-left-whisker-comp ( is-retraction-map-retraction-retract S))))))) ( is-torsorial-htpy-retract (retract-retracts R))) is-equiv-equiv-eq-retracts : (R S : retracts l2 A) → is-equiv (equiv-eq-retracts R S) is-equiv-equiv-eq-retracts R = fundamental-theorem-id (is-torsorial-equiv-retracts R) (equiv-eq-retracts R) extensionality-retracts : (R S : retracts l2 A) → (R = S) ≃ equiv-retracts R S extensionality-retracts R S = ( equiv-eq-retracts R S , is-equiv-equiv-eq-retracts R S) eq-equiv-retracts : (R S : retracts l2 A) → equiv-retracts R S → R = S eq-equiv-retracts R S = map-inv-is-equiv (is-equiv-equiv-eq-retracts R S)
The underlying logical equivalence associated to a retract
iff-retract : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A retract-of B → A ↔ B iff-retract R = inclusion-retract R , map-retraction-retract R iff-retract' : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A retract-of B → B ↔ A iff-retract' = inv-iff ∘ iff-retract
See also
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-08-21. Fredrik Bakke. Literature – Idempotents in Intensional Type Theory (#1160).
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-03-22. Fredrik Bakke. Additions to cartesian morphisms (#1087).
- 2024-03-20. Fredrik Bakke. Janitorial work on equivalences and embeddings (#1085).