Orbits of permutations
Content created by Egbert Rijke, Fredrik Bakke, Eléonore Mangel, Jonathan Prieto-Cubides, Elisabeth Stenholm, Julian KG, Victor Blanchi, fernabnor and louismntnu.
Created on 2022-03-12.
Last modified on 2024-04-11.
{-# OPTIONS --lossy-unification #-} module finite-group-theory.orbits-permutations where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.decidable-types open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.euclidean-division-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.lower-bounds-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import elementary-number-theory.well-ordering-principle-natural-numbers open import finite-group-theory.transpositions open import foundation.action-on-identifications-functions open import foundation.automorphisms open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-equivalence-relations open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.double-negation open import foundation.empty-types open import foundation.equality-dependent-pair-types open import foundation.equivalence-classes open import foundation.equivalence-extensionality open import foundation.equivalence-relations open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.injective-maps open import foundation.iterating-functions open import foundation.logical-equivalences open import foundation.negated-equality open import foundation.negation open import foundation.propositional-truncations open import foundation.propositions open import foundation.repetitions-of-values open import foundation.sets open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels open import lists.lists open import univalent-combinatorics.2-element-decidable-subtypes open import univalent-combinatorics.2-element-types open import univalent-combinatorics.counting open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.image-of-maps open import univalent-combinatorics.pigeonhole-principle open import univalent-combinatorics.standard-finite-types
Idea
The orbit of a point x
for a permutation f
is the set of point obtained by
iterating f
on x
.
Definition
The groupoid of iterative orbits of an automorphism on a finite set
module _ {l : Level} (X : 𝔽 l) (e : type-𝔽 X ≃ type-𝔽 X) where iso-iterative-groupoid-automorphism-𝔽 : (x y : type-𝔽 X) → UU l iso-iterative-groupoid-automorphism-𝔽 x y = Σ ℕ (λ n → Id (iterate n (map-equiv e) x) y) natural-isomorphism-iterative-groupoid-automorphism-𝔽 : (x y : type-𝔽 X) (f : iso-iterative-groupoid-automorphism-𝔽 x y) → ℕ natural-isomorphism-iterative-groupoid-automorphism-𝔽 x y = pr1 id-iso-iterative-groupoid-automorphism-𝔽 : (x : type-𝔽 X) → iso-iterative-groupoid-automorphism-𝔽 x x pr1 (id-iso-iterative-groupoid-automorphism-𝔽 x) = 0 pr2 (id-iso-iterative-groupoid-automorphism-𝔽 x) = refl comp-iso-iterative-groupoid-automorphism-𝔽 : {x y z : type-𝔽 X} → iso-iterative-groupoid-automorphism-𝔽 y z → iso-iterative-groupoid-automorphism-𝔽 x y → iso-iterative-groupoid-automorphism-𝔽 x z pr1 (comp-iso-iterative-groupoid-automorphism-𝔽 (pair n q) (pair m p)) = n +ℕ m pr2 (comp-iso-iterative-groupoid-automorphism-𝔽 (pair n q) (pair m p)) = iterate-add-ℕ n m (map-equiv e) _ ∙ (ap (iterate n (map-equiv e)) p ∙ q)
Properties
For types equipped with a counting, orbits of permutations are finite
The map i ↦ eⁱ a
repeats itself.
module _ {l : Level} (X : UU l) (eX : count X) (f : Aut X) (a : X) where repetition-iterate-automorphism-Fin : repetition-of-values ( λ (k : Fin (succ-ℕ (number-of-elements-count eX))) → iterate ( nat-Fin (succ-ℕ (number-of-elements-count eX)) k) ( map-equiv f) ( a)) repetition-iterate-automorphism-Fin = repetition-of-values-le-count ( count-Fin (succ-ℕ (number-of-elements-count eX))) ( eX) ( λ k → iterate ( nat-Fin (succ-ℕ (number-of-elements-count eX)) k) ( map-equiv f) ( a)) ( succ-le-ℕ (number-of-elements-count eX)) point1-iterate-ℕ : ℕ point1-iterate-ℕ = nat-Fin ( succ-ℕ (number-of-elements-count eX)) ( pr1 (pr1 repetition-iterate-automorphism-Fin)) point2-iterate-ℕ : ℕ point2-iterate-ℕ = nat-Fin ( succ-ℕ (number-of-elements-count eX)) ( pr1 (pr2 (pr1 repetition-iterate-automorphism-Fin))) neq-points-iterate-ℕ : point1-iterate-ℕ ≠ point2-iterate-ℕ neq-points-iterate-ℕ p = pr2 ( pr2 (pr1 repetition-iterate-automorphism-Fin)) ( is-injective-nat-Fin (succ-ℕ (number-of-elements-count eX)) p) two-points-iterate-ordered-ℕ : ( point1-iterate-ℕ ≤-ℕ point2-iterate-ℕ) + ( point2-iterate-ℕ ≤-ℕ point1-iterate-ℕ) → Σ ( ℕ) ( λ n → Σ ( ℕ) ( λ m → ( le-ℕ m n) × ( Id (iterate n (map-equiv f) a) (iterate m (map-equiv f) a)))) pr1 (two-points-iterate-ordered-ℕ (inl p)) = point2-iterate-ℕ pr1 (pr2 (two-points-iterate-ordered-ℕ (inl p))) = point1-iterate-ℕ pr1 (pr2 (pr2 (two-points-iterate-ordered-ℕ (inl p)))) = le-leq-neq-ℕ p neq-points-iterate-ℕ pr2 (pr2 (pr2 (two-points-iterate-ordered-ℕ (inl p)))) = inv (pr2 repetition-iterate-automorphism-Fin) pr1 (two-points-iterate-ordered-ℕ (inr p)) = point1-iterate-ℕ pr1 (pr2 (two-points-iterate-ordered-ℕ (inr p))) = point2-iterate-ℕ pr1 (pr2 (pr2 (two-points-iterate-ordered-ℕ (inr p)))) = le-leq-neq-ℕ p λ e → neq-points-iterate-ℕ (inv e) pr2 (pr2 (pr2 (two-points-iterate-ordered-ℕ (inr p)))) = pr2 repetition-iterate-automorphism-Fin leq-greater-point-number-elements : ( p : ( point1-iterate-ℕ ≤-ℕ point2-iterate-ℕ) + ( point2-iterate-ℕ ≤-ℕ point1-iterate-ℕ)) → pr1 (two-points-iterate-ordered-ℕ p) ≤-ℕ number-of-elements-count eX leq-greater-point-number-elements (inl p) = ( upper-bound-nat-Fin ( number-of-elements-count eX) ( pr1 (pr2 (pr1 repetition-iterate-automorphism-Fin)))) leq-greater-point-number-elements (inr p) = ( upper-bound-nat-Fin ( number-of-elements-count eX) ( pr1 (pr1 repetition-iterate-automorphism-Fin))) abstract min-repeating : minimal-element-ℕ ( λ n → Σ ( ℕ) ( λ m → ( le-ℕ m n) × ( Id (iterate n (map-equiv f) a) (iterate m (map-equiv f) a)))) min-repeating = well-ordering-principle-ℕ ( λ n → Σ ( ℕ) ( λ m → ( le-ℕ m n) × ( Id (iterate n (map-equiv f) a) (iterate m (map-equiv f) a)))) ( λ n → is-decidable-bounded-Σ-ℕ n ( λ m → le-ℕ m n) ( λ m → Id (iterate n (map-equiv f) a) (iterate m (map-equiv f) a)) ( λ m → is-decidable-le-ℕ m n) ( λ m → has-decidable-equality-count eX ( iterate n (map-equiv f) a) ( iterate m (map-equiv f) a)) ( λ m p → leq-le-ℕ m n p)) ( two-points-iterate-ordered-ℕ ( linear-leq-ℕ point1-iterate-ℕ point2-iterate-ℕ)) first-point-min-repeating : ℕ first-point-min-repeating = pr1 min-repeating second-point-min-repeating : ℕ second-point-min-repeating = pr1 (pr1 (pr2 min-repeating)) le-min-reporting : le-ℕ second-point-min-repeating first-point-min-repeating le-min-reporting = pr1 (pr2 (pr1 (pr2 min-repeating))) is-lower-bound-min-reporting : is-lower-bound-ℕ ( λ n → Σ ( ℕ) ( λ m → ( le-ℕ m n) × ( Id (iterate n (map-equiv f) a) (iterate m (map-equiv f) a)))) ( first-point-min-repeating) is-lower-bound-min-reporting = pr2 (pr2 min-repeating) same-image-iterate-min-reporting : Id ( iterate first-point-min-repeating (map-equiv f) a) ( iterate second-point-min-repeating (map-equiv f) a) same-image-iterate-min-reporting = pr2 (pr2 (pr1 (pr2 min-repeating))) leq-first-point-min-reporting-succ-number-elements : first-point-min-repeating ≤-ℕ (number-of-elements-count eX) leq-first-point-min-reporting-succ-number-elements = transitive-leq-ℕ ( first-point-min-repeating) ( pr1 ( two-points-iterate-ordered-ℕ ( linear-leq-ℕ point1-iterate-ℕ point2-iterate-ℕ))) ( number-of-elements-count eX) ( leq-greater-point-number-elements ( linear-leq-ℕ point1-iterate-ℕ point2-iterate-ℕ)) ( is-lower-bound-min-reporting ( pr1 ( two-points-iterate-ordered-ℕ ( linear-leq-ℕ point1-iterate-ℕ point2-iterate-ℕ))) ( pr2 ( two-points-iterate-ordered-ℕ ( linear-leq-ℕ point1-iterate-ℕ point2-iterate-ℕ)))) abstract not-not-eq-second-point-zero-min-reporting : ¬¬ (Id second-point-min-repeating zero-ℕ) not-not-eq-second-point-zero-min-reporting np = contradiction-le-ℕ ( pred-first) ( first-point-min-repeating) ( tr ( λ x → le-ℕ pred-first x) ( inv equality-pred-first) ( succ-le-ℕ pred-first)) ( is-lower-bound-min-reporting ( pred-first) ( pair ( pred-second) ( pair ( tr ( λ x → le-ℕ (succ-ℕ pred-second) x) ( equality-pred-first) ( tr ( λ x → le-ℕ x first-point-min-repeating) ( equality-pred-second) ( le-min-reporting))) ( is-injective-equiv ( f) ( tr ( λ x → Id ( iterate x (map-equiv f) a) ( iterate (succ-ℕ pred-second) (map-equiv f) a)) ( equality-pred-first) ( tr ( λ x → Id ( iterate first-point-min-repeating (map-equiv f) a) ( iterate x (map-equiv f) a)) ( equality-pred-second) ( same-image-iterate-min-reporting))))))) where is-successor-first-point-min-repeating : is-successor-ℕ first-point-min-repeating is-successor-first-point-min-repeating = is-successor-is-nonzero-ℕ ( is-nonzero-le-ℕ second-point-min-repeating first-point-min-repeating le-min-reporting) pred-first : ℕ pred-first = pr1 is-successor-first-point-min-repeating equality-pred-first : Id first-point-min-repeating (succ-ℕ pred-first) equality-pred-first = pr2 is-successor-first-point-min-repeating is-successor-second-point-min-repeating : is-successor-ℕ second-point-min-repeating is-successor-second-point-min-repeating = is-successor-is-nonzero-ℕ np pred-second : ℕ pred-second = pr1 is-successor-second-point-min-repeating equality-pred-second : Id second-point-min-repeating (succ-ℕ pred-second) equality-pred-second = pr2 is-successor-second-point-min-repeating has-finite-orbits-permutation' : is-decidable (Id second-point-min-repeating zero-ℕ) → Σ ℕ (λ k → (is-nonzero-ℕ k) × Id (iterate k (map-equiv f) a) a) pr1 (has-finite-orbits-permutation' (inl p)) = first-point-min-repeating pr1 (pr2 (has-finite-orbits-permutation' (inl p))) = is-nonzero-le-ℕ second-point-min-repeating first-point-min-repeating le-min-reporting pr2 (pr2 (has-finite-orbits-permutation' (inl p))) = tr ( λ x → Id ( iterate first-point-min-repeating (map-equiv f) a) ( iterate x (map-equiv f) a)) ( p) ( same-image-iterate-min-reporting) has-finite-orbits-permutation' (inr np) = ex-falso (not-not-eq-second-point-zero-min-reporting np) where is-successor-first-point-min-repeating : is-successor-ℕ first-point-min-repeating is-successor-first-point-min-repeating = is-successor-is-nonzero-ℕ ( is-nonzero-le-ℕ second-point-min-repeating first-point-min-repeating le-min-reporting) pred-first : ℕ pred-first = pr1 is-successor-first-point-min-repeating equality-pred-first : Id first-point-min-repeating (succ-ℕ pred-first) equality-pred-first = pr2 is-successor-first-point-min-repeating is-successor-second-point-min-repeating : is-successor-ℕ second-point-min-repeating is-successor-second-point-min-repeating = is-successor-is-nonzero-ℕ np pred-second : ℕ pred-second = pr1 is-successor-second-point-min-repeating equality-pred-second : Id second-point-min-repeating (succ-ℕ pred-second) equality-pred-second = pr2 is-successor-second-point-min-repeating has-finite-orbits-permutation : Σ ℕ (λ k → (is-nonzero-ℕ k) × Id (iterate k (map-equiv f) a) a) has-finite-orbits-permutation = has-finite-orbits-permutation' ( has-decidable-equality-ℕ second-point-min-repeating zero-ℕ) leq-has-finite-orbits-permutation-number-elements : ( pr1 has-finite-orbits-permutation) ≤-ℕ (number-of-elements-count eX) leq-has-finite-orbits-permutation-number-elements = cases-second-point ( has-decidable-equality-ℕ second-point-min-repeating zero-ℕ) where cases-second-point : is-decidable (Id second-point-min-repeating zero-ℕ) → (pr1 has-finite-orbits-permutation) ≤-ℕ (number-of-elements-count eX) cases-second-point (inl p) = tr ( λ x → ( pr1 (has-finite-orbits-permutation' x)) ≤-ℕ ( number-of-elements-count eX)) { x = inl p} { y = has-decidable-equality-ℕ second-point-min-repeating zero-ℕ} ( eq-is-prop ( is-prop-type-Prop ( is-decidable-Prop ( Id-Prop ℕ-Set second-point-min-repeating zero-ℕ)))) ( leq-first-point-min-reporting-succ-number-elements) cases-second-point (inr np) = ex-falso (not-not-eq-second-point-zero-min-reporting np) mult-has-finite-orbits-permutation : (k : ℕ) → Id (iterate (k *ℕ (pr1 has-finite-orbits-permutation)) (map-equiv f) a) a mult-has-finite-orbits-permutation zero-ℕ = refl mult-has-finite-orbits-permutation (succ-ℕ k) = ( iterate-add-ℕ ( k *ℕ (pr1 has-finite-orbits-permutation)) ( pr1 has-finite-orbits-permutation) ( map-equiv f) ( a)) ∙ ( ( ap ( iterate (k *ℕ (pr1 has-finite-orbits-permutation)) (map-equiv f)) ( pr2 (pr2 has-finite-orbits-permutation))) ∙ ( mult-has-finite-orbits-permutation k))
For finite types, the number of orbits-permutation of a permutation is finite
module _ {l : Level} (n : ℕ) (X : UU-Fin l n) (f : Aut (type-UU-Fin n X)) where same-orbits-permutation : equivalence-relation l (type-UU-Fin n X) (pr1 same-orbits-permutation) a b = trunc-Prop (Σ ℕ (λ k → Id (iterate k (map-equiv f) a) b)) pr1 (pr2 same-orbits-permutation) _ = unit-trunc-Prop (0 , refl) pr1 (pr2 (pr2 same-orbits-permutation)) a b P = apply-universal-property-trunc-Prop ( P) ( pr1 same-orbits-permutation b a) ( λ (k , p) → apply-universal-property-trunc-Prop ( has-cardinality-type-UU-Fin n X) ( pr1 same-orbits-permutation b a) ( λ h → unit-trunc-Prop (pair ( pr1 (lemma h k)) ( ( ap (iterate (pr1 (lemma h k)) (map-equiv f)) (inv p)) ∙ ( ( inv (iterate-add-ℕ (pr1 (lemma h k)) k (map-equiv f) a)) ∙ ( ( ap ( λ x → iterate x (map-equiv f) a) ( pr2 (lemma h k))) ∙ ( mult-has-finite-orbits-permutation ( type-UU-Fin n X) ( pair n h) ( f) ( a) ( k)))))))) where has-finite-orbits-permutation-a : (h : Fin n ≃ type-UU-Fin n X) → Σ ℕ (λ l → (is-nonzero-ℕ l) × Id (iterate l (map-equiv f) a) a) has-finite-orbits-permutation-a h = has-finite-orbits-permutation (type-UU-Fin n X) (pair n h) f a lemma : (h : Fin n ≃ type-UU-Fin n X) (k : ℕ) → Σ ( ℕ) ( λ j → Id (j +ℕ k) (k *ℕ (pr1 (has-finite-orbits-permutation-a h)))) lemma h k = subtraction-leq-ℕ ( k) ( k *ℕ (pr1 (has-finite-orbits-permutation-a h))) ( leq-mul-is-nonzero-ℕ ( pr1 (has-finite-orbits-permutation-a h)) ( k) ( pr1 (pr2 (has-finite-orbits-permutation-a h)))) pr2 (pr2 (pr2 same-orbits-permutation)) a b c Q P = apply-universal-property-trunc-Prop ( P) ( pr1 same-orbits-permutation a c) ( λ (k1 , p) → apply-universal-property-trunc-Prop ( Q) ( pr1 same-orbits-permutation a c) ( λ (k2 , q) → unit-trunc-Prop ( ( k2 +ℕ k1) , ( ( iterate-add-ℕ k2 k1 (map-equiv f) a) ∙ ( ap (iterate k2 (map-equiv f)) p ∙ q))))) abstract is-decidable-same-orbits-permutation : ( a b : type-UU-Fin n X) → is-decidable (sim-equivalence-relation same-orbits-permutation a b) is-decidable-same-orbits-permutation a b = apply-universal-property-trunc-Prop ( has-cardinality-type-UU-Fin n X) ( is-decidable-Prop ( prop-equivalence-relation same-orbits-permutation a b)) ( λ h → is-decidable-trunc-Prop-is-merely-decidable ( Σ ℕ (λ k → Id (iterate k (map-equiv f) a) b)) ( unit-trunc-Prop ( is-decidable-iterate-is-decidable-bounded h a b ( is-decidable-bounded-Σ-ℕ n ( λ z → z ≤-ℕ n) ( λ z → Id (iterate z (map-equiv f) a) b) ( λ z → is-decidable-leq-ℕ z n) ( λ z → has-decidable-equality-equiv ( inv-equiv h) ( has-decidable-equality-Fin n) ( iterate z (map-equiv f) a) ( b)) ( λ m p → p))))) where is-decidable-iterate-is-decidable-bounded : ( h : Fin n ≃ type-UU-Fin n X) (a b : type-UU-Fin n X) → is-decidable ( Σ ℕ (λ m → (m ≤-ℕ n) × (Id (iterate m (map-equiv f) a) b))) → is-decidable (Σ ℕ (λ m → Id (iterate m (map-equiv f) a) b)) is-decidable-iterate-is-decidable-bounded h a b (inl p) = inl (pair (pr1 p) (pr2 (pr2 p))) is-decidable-iterate-is-decidable-bounded h a b (inr np) = inr ( λ p → np ( pair ( remainder-euclidean-division-ℕ m (pr1 p)) ( pair ( leq-le-ℕ ( remainder-euclidean-division-ℕ m (pr1 p)) ( n) ( concatenate-le-leq-ℕ { y = m} ( strict-upper-bound-remainder-euclidean-division-ℕ ( m) ( pr1 p) ( pr1 ( pr2 ( has-finite-orbits-permutation ( type-UU-Fin n X) ( pair n h) ( f) ( a))))) ( leq-has-finite-orbits-permutation-number-elements ( type-UU-Fin n X) ( pair n h) ( f) ( a)))) ( ( ap ( iterate ( remainder-euclidean-division-ℕ m (pr1 p)) ( map-equiv f)) ( inv ( mult-has-finite-orbits-permutation ( type-UU-Fin n X) ( pair n h) ( f) ( a) ( quotient-euclidean-division-ℕ m (pr1 p))))) ∙ ( ( inv ( iterate-add-ℕ ( remainder-euclidean-division-ℕ m (pr1 p)) ( (quotient-euclidean-division-ℕ m (pr1 p)) *ℕ m) ( map-equiv f) ( a))) ∙ ( ( ap ( λ x → iterate x (map-equiv f) a) ( ( commutative-add-ℕ ( remainder-euclidean-division-ℕ m (pr1 p)) ( quotient-euclidean-division-ℕ m (pr1 p) *ℕ m)) ∙ ( eq-euclidean-division-ℕ m (pr1 p)))) ∙ ( pr2 p))))))) where m : ℕ m = pr1 ( has-finite-orbits-permutation ( type-UU-Fin n X) ( pair n h) ( f) ( a)) abstract is-decidable-is-in-equivalence-class-same-orbits-permutation : (T : equivalence-class same-orbits-permutation) → (a : type-UU-Fin n X) → is-decidable (is-in-equivalence-class same-orbits-permutation T a) is-decidable-is-in-equivalence-class-same-orbits-permutation T a = is-decidable-is-in-equivalence-class-is-decidable ( same-orbits-permutation) ( is-decidable-same-orbits-permutation) ( T) ( a) abstract has-finite-number-orbits-permutation : is-finite (equivalence-class same-orbits-permutation) has-finite-number-orbits-permutation = is-finite-codomain ( is-finite-type-UU-Fin n X) ( is-surjective-class same-orbits-permutation) ( apply-universal-property-trunc-Prop ( has-cardinality-type-UU-Fin n X) ( pair ( has-decidable-equality ( equivalence-class same-orbits-permutation)) ( is-prop-has-decidable-equality)) ( λ h T1 T2 → apply-universal-property-trunc-Prop ( pr2 T1) ( is-decidable-Prop ( Id-Prop (equivalence-class-Set same-orbits-permutation) T1 T2)) ( λ (pair t1 p1) → cases-decidable-equality T1 T2 t1 ( eq-pair-Σ ( ap ( subtype-equivalence-class same-orbits-permutation) ( eq-has-same-elements-equivalence-class same-orbits-permutation T1 ( class same-orbits-permutation t1) p1)) ( all-elements-equal-type-trunc-Prop _ _)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation T2 t1)))) where cases-decidable-equality : (T1 T2 : equivalence-class same-orbits-permutation) (t1 : type-UU-Fin n X) → Id T1 (class same-orbits-permutation t1) → is-decidable ( is-in-equivalence-class same-orbits-permutation T2 t1) → is-decidable (Id T1 T2) cases-decidable-equality T1 T2 t1 p1 (inl p) = inl ( ( p1) ∙ ( map-inv-is-equiv ( is-equiv-is-in-equivalence-class-eq-equivalence-class same-orbits-permutation t1 T2) ( p))) cases-decidable-equality T1 T2 t1 p1 (inr np) = inr ( λ p → np ( is-in-equivalence-class-eq-equivalence-class same-orbits-permutation t1 T2 (inv p1 ∙ p))) number-of-orbits-permutation : ℕ number-of-orbits-permutation = number-of-elements-is-finite has-finite-number-orbits-permutation sign-permutation-orbit : Fin 2 sign-permutation-orbit = iterate (n +ℕ number-of-orbits-permutation) (succ-Fin 2) (zero-Fin 1)
module _ {l1 : Level} (X : UU l1) (eX : count X) (a b : X) (np : a ≠ b) where composition-transposition-a-b : (X ≃ X) → (X ≃ X) composition-transposition-a-b g = ( standard-transposition (has-decidable-equality-count eX) np) ∘e g composition-transposition-a-b-involution : ( g : X ≃ X) → htpy-equiv ( composition-transposition-a-b (composition-transposition-a-b g)) ( g) composition-transposition-a-b-involution g x = is-involution-map-transposition ( standard-2-Element-Decidable-Subtype ( has-decidable-equality-count eX) ( np)) ( map-equiv g x) same-orbits-permutation-count : (X ≃ X) → equivalence-relation l1 X same-orbits-permutation-count = same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) abstract minimal-element-iterate : (g : X ≃ X) (x y : X) → Σ ℕ (λ k → Id (iterate k (map-equiv g) x) y) → minimal-element-ℕ (λ k → Id (iterate k (map-equiv g) x) y) minimal-element-iterate g x y = well-ordering-principle-ℕ ( λ k → Id (iterate k (map-equiv g) x) y) ( λ k → has-decidable-equality-count eX (iterate k (map-equiv g) x) y) abstract minimal-element-iterate-nonzero : (g : X ≃ X) (x y : X) → Σ ℕ (λ k → is-nonzero-ℕ k × Id (iterate k (map-equiv g) x) y) → minimal-element-ℕ ( λ k → is-nonzero-ℕ k × Id (iterate k (map-equiv g) x) y) minimal-element-iterate-nonzero g x y = well-ordering-principle-ℕ ( λ k → is-nonzero-ℕ k × Id (iterate k (map-equiv g) x) y) ( λ k → is-decidable-product ( is-decidable-neg (has-decidable-equality-ℕ k zero-ℕ)) ( has-decidable-equality-count eX (iterate k (map-equiv g) x) y)) abstract minimal-element-iterate-2 : (g : X ≃ X) (x y z : X) → Σ ( ℕ) ( λ k → ( Id (iterate k (map-equiv g) x) y) + ( Id (iterate k (map-equiv g) x) z)) → minimal-element-ℕ ( λ k → ( Id (iterate k (map-equiv g) x) y) + ( Id (iterate k (map-equiv g) x) z)) minimal-element-iterate-2 g x y z p = well-ordering-principle-ℕ ( λ k → ( Id (iterate k (map-equiv g) x) y) + ( Id (iterate k (map-equiv g) x) z)) ( λ k → is-decidable-coproduct ( has-decidable-equality-count eX (iterate k (map-equiv g) x) y) ( has-decidable-equality-count eX (iterate k (map-equiv g) x) z)) ( p) abstract equal-iterate-transposition : {l2 : Level} (x : X) (g : X ≃ X) (C : ℕ → UU l2) ( F : (k : ℕ) → C k → ( iterate k (map-equiv g) x ≠ a) × ( iterate k (map-equiv g) x ≠ b)) ( Ind : (n : ℕ) → C (succ-ℕ n) → is-nonzero-ℕ n → C n) → (k : ℕ) → (is-zero-ℕ k + C k) → Id ( iterate k (map-equiv (composition-transposition-a-b g)) x) ( iterate k (map-equiv g) x) equal-iterate-transposition x g C F Ind zero-ℕ p = refl equal-iterate-transposition x g C F Ind (succ-ℕ k) (inl p) = ex-falso (is-nonzero-succ-ℕ k p) equal-iterate-transposition x g C F Ind (succ-ℕ k) (inr p) = cases-equal-iterate-transposition ( has-decidable-equality-count eX ( iterate (succ-ℕ k) (map-equiv g) x) ( a)) ( has-decidable-equality-count eX ( iterate (succ-ℕ k) (map-equiv g) x) ( b)) where induction-cases-equal-iterate-transposition : is-decidable (Id k zero-ℕ) → Id ( iterate k (map-equiv (composition-transposition-a-b g)) x) ( iterate k (map-equiv g) x) induction-cases-equal-iterate-transposition (inl s) = tr ( λ k → Id (iterate k (map-equiv (composition-transposition-a-b g)) x) (iterate k (map-equiv g) x)) ( inv s) ( refl) induction-cases-equal-iterate-transposition (inr s) = equal-iterate-transposition x g C F Ind k (inr (Ind k p s)) cases-equal-iterate-transposition : is-decidable (Id (iterate (succ-ℕ k) (map-equiv g) x) a) → is-decidable (Id (iterate (succ-ℕ k) (map-equiv g) x) b) → Id ( iterate (succ-ℕ k) (map-equiv (composition-transposition-a-b g)) x) ( iterate (succ-ℕ k) (map-equiv g) x) cases-equal-iterate-transposition (inl q) r = ex-falso (pr1 (F (succ-ℕ k) p) q) cases-equal-iterate-transposition (inr q) (inl r) = ex-falso (pr2 (F (succ-ℕ k) p) r) cases-equal-iterate-transposition (inr q) (inr r) = ( ap ( λ n → iterate n (map-equiv (composition-transposition-a-b g)) x) ( commutative-add-ℕ k (succ-ℕ zero-ℕ))) ∙ ( ( iterate-add-ℕ ( succ-ℕ zero-ℕ) ( k) ( map-equiv (composition-transposition-a-b g)) ( x)) ∙ ( ( ap ( map-equiv (composition-transposition-a-b g)) ( induction-cases-equal-iterate-transposition ( has-decidable-equality-ℕ k zero-ℕ))) ∙ ( is-fixed-point-standard-transposition ( has-decidable-equality-count eX) ( np) ( iterate (succ-ℕ k) (map-equiv g) x) ( λ q' → q (inv q')) ( λ r' → r (inv r'))))) abstract conserves-other-orbits-transposition : (g : X ≃ X) (x y : X) → ¬ (sim-equivalence-relation (same-orbits-permutation-count g) x a) → ¬ (sim-equivalence-relation (same-orbits-permutation-count g) x b) → ( ( sim-equivalence-relation (same-orbits-permutation-count g) x y) ≃ ( sim-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( x) ( y))) conserves-other-orbits-transposition g x y NA NB = pair ( λ P' → apply-universal-property-trunc-Prop P' ( prop-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( x) ( y)) ( λ (pair k p) → unit-trunc-Prop (pair k ( (equal-iterate-transposition-other-orbits k) ∙ ( p))))) ( is-equiv-has-converse-is-prop ( is-prop-type-trunc-Prop) ( is-prop-type-trunc-Prop) ( λ P' → apply-universal-property-trunc-Prop P' ( prop-equivalence-relation (same-orbits-permutation-count g) x y) ( λ (pair k p) → unit-trunc-Prop ( ( k) , ( (inv (equal-iterate-transposition-other-orbits k)) ∙ ( p)))))) where equal-iterate-transposition-other-orbits : (k : ℕ) → Id ( iterate k (map-equiv (composition-transposition-a-b g)) x) ( iterate k (map-equiv g) x) equal-iterate-transposition-other-orbits k = equal-iterate-transposition x g (λ k' → unit) (λ k' _ → pair ( λ q → NA (unit-trunc-Prop (pair k' q))) ( λ r → NB (unit-trunc-Prop (pair k' r)))) (λ _ _ _ → star) k (inr star) conserves-other-orbits-transposition-quotient : (g : X ≃ X) (T : equivalence-class (same-orbits-permutation-count g)) → ¬ (is-in-equivalence-class (same-orbits-permutation-count g) T a) → ¬ (is-in-equivalence-class (same-orbits-permutation-count g) T b) → equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) pr1 (conserves-other-orbits-transposition-quotient g T nq nr) = pr1 T pr2 (conserves-other-orbits-transposition-quotient g (pair T1 T2) nq nr) = apply-universal-property-trunc-Prop ( T2) ( is-equivalence-class-Prop ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T1)) ( λ (pair x Q) → unit-trunc-Prop ( pair x ( λ y → iff-equiv ( ( conserves-other-orbits-transposition g x y ( nq ∘ backward-implication (Q a)) ( nr ∘ backward-implication (Q b))) ∘e ( equiv-iff' ( T1 y) ( prop-equivalence-relation ( same-orbits-permutation-count g) ( x) ( y)) ( Q y)))))) abstract not-same-orbits-transposition-same-orbits : ( g : X ≃ X) ( P : ( sim-equivalence-relation ( same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g)) ( a) ( b))) → ¬ ( sim-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( a) ( b)) not-same-orbits-transposition-same-orbits g P Q = apply-universal-property-trunc-Prop Q empty-Prop ( λ (pair k2 q) → ( apply-universal-property-trunc-Prop P empty-Prop ( λ p → lemma3 p k2 q))) where neq-iterate-nonzero-le-minimal-element : ( pa : Σ ℕ (λ k → Id (iterate k (map-equiv g) a) b)) ( k : ℕ) → ( is-nonzero-ℕ k × le-ℕ k (pr1 (minimal-element-iterate g a b pa))) → ( iterate k (map-equiv g) a ≠ a) × (iterate k (map-equiv g) a ≠ b) pr1 (neq-iterate-nonzero-le-minimal-element pa k (pair nz ineq)) q = contradiction-le-ℕ ( pr1 pair-k2) ( pr1 (minimal-element-iterate g a b pa)) ( le-subtraction-ℕ ( pr1 (pair-k2)) ( pr1 (minimal-element-iterate g a b pa)) ( k) ( nz) ( commutative-add-ℕ k (pr1 (pair-k2)) ∙ pr2 (pr2 pair-k2))) ( pr2 ( pr2 (minimal-element-iterate g a b pa)) ( pr1 pair-k2) ( ( ap (iterate (pr1 pair-k2) (map-equiv g)) (inv q)) ∙ ( (inv (iterate-add-ℕ (pr1 pair-k2) k (map-equiv g) a)) ∙ ( ap ( λ n → iterate n (map-equiv g) a) ( pr2 (pr2 pair-k2)) ∙ pr1 (pr2 (minimal-element-iterate g a b pa)))))) where pair-k2 : Σ ( ℕ) ( λ l → is-nonzero-ℕ l × Id (l +ℕ k) (pr1 (minimal-element-iterate g a b pa))) pair-k2 = (subtraction-le-ℕ k (pr1 (minimal-element-iterate g a b pa)) ineq) pr2 (neq-iterate-nonzero-le-minimal-element pa k (pair nz ineq)) r = ex-falso ( contradiction-le-ℕ k (pr1 (minimal-element-iterate g a b pa)) ineq (pr2 (pr2 (minimal-element-iterate g a b pa)) k r)) equal-iterate-transposition-a : (pa : Σ ℕ (λ k → Id (iterate k (map-equiv g) a) b)) (k : ℕ) → le-ℕ k (pr1 (minimal-element-iterate g a b pa)) → ( Id ( iterate k (map-equiv (composition-transposition-a-b g)) a) ( iterate k (map-equiv g) a)) equal-iterate-transposition-a pa k ineq = equal-iterate-transposition a g ( λ k' → ( is-nonzero-ℕ k') × ( le-ℕ k' (pr1 (minimal-element-iterate g a b pa)))) ( neq-iterate-nonzero-le-minimal-element pa) ( λ n (pair _ s) nz → pair ( nz) ( transitive-le-ℕ n ( succ-ℕ n) ( pr1 (minimal-element-iterate g a b pa)) ( succ-le-ℕ n) s)) ( k) ( cases-equal-iterate-transposition-a ( has-decidable-equality-ℕ k zero-ℕ)) where cases-equal-iterate-transposition-a : is-decidable (is-zero-ℕ k) → ( is-zero-ℕ k) + ( is-nonzero-ℕ k × le-ℕ k (pr1 (minimal-element-iterate g a b pa))) cases-equal-iterate-transposition-a (inl s) = inl s cases-equal-iterate-transposition-a (inr s) = inr (pair s ineq) lemma2 : ( pa : Σ ℕ (λ k → Id (iterate k (map-equiv g) a) b)) → is-decidable (Id (pr1 (minimal-element-iterate g a b pa)) zero-ℕ) → Id ( iterate ( pr1 (minimal-element-iterate g a b pa)) ( map-equiv (composition-transposition-a-b g)) ( a)) ( a) lemma2 pa (inl p) = ex-falso ( np ( tr ( λ v → Id (iterate v (map-equiv g) a) b) ( p) ( pr1 (pr2 (minimal-element-iterate g a b pa))))) lemma2 pa (inr p) = ( ap ( λ n → iterate n (map-equiv (composition-transposition-a-b g)) a) ( pr2 (is-successor-k1) ∙ commutative-add-ℕ (pr1 is-successor-k1) (succ-ℕ zero-ℕ))) ∙ ( ( iterate-add-ℕ ( succ-ℕ zero-ℕ) ( pr1 is-successor-k1) ( map-equiv (composition-transposition-a-b g)) a) ∙ ( ( ap ( map-equiv (composition-transposition-a-b g)) ( equal-iterate-transposition-a pa (pr1 is-successor-k1) ( tr ( le-ℕ (pr1 is-successor-k1)) ( inv (pr2 is-successor-k1)) ( succ-le-ℕ (pr1 is-successor-k1))))) ∙ ( ( ap ( λ n → map-standard-transposition ( has-decidable-equality-count eX) ( np) ( iterate n (map-equiv g) a)) ( inv (pr2 is-successor-k1))) ∙ ( ( ap ( map-standard-transposition ( has-decidable-equality-count eX) np) ( pr1 (pr2 (minimal-element-iterate g a b pa)))) ∙ ( right-computation-standard-transposition ( has-decidable-equality-count eX) ( np)))))) where is-successor-k1 : is-successor-ℕ (pr1 (minimal-element-iterate g a b pa)) is-successor-k1 = is-successor-is-nonzero-ℕ p mult-lemma2 : ( pa : Σ ℕ (λ k → Id (iterate k (map-equiv g) a) b)) (k : ℕ) → Id ( iterate ( k *ℕ (pr1 (minimal-element-iterate g a b pa))) ( map-equiv (composition-transposition-a-b g)) ( a)) ( a) mult-lemma2 pa zero-ℕ = refl mult-lemma2 pa (succ-ℕ k) = ( iterate-add-ℕ ( k *ℕ (pr1 (minimal-element-iterate g a b pa))) ( pr1 (minimal-element-iterate g a b pa)) ( map-equiv (composition-transposition-a-b g)) a) ∙ ( ap ( iterate ( k *ℕ (pr1 (minimal-element-iterate g a b pa))) ( map-equiv (composition-transposition-a-b g))) ( lemma2 ( pa) ( has-decidable-equality-ℕ ( pr1 (minimal-element-iterate g a b pa)) ( zero-ℕ))) ∙ ( mult-lemma2 pa k)) lemma3 : ( pa : Σ ℕ (λ k → Id (iterate k (map-equiv g) a) b)) (k : ℕ) → iterate k (map-equiv (composition-transposition-a-b g)) a ≠ b lemma3 pa k q = contradiction-le-ℕ ( r) ( pr1 (minimal-element-iterate g a b pa)) ( ineq) ( pr2 ( pr2 (minimal-element-iterate g a b pa)) ( r) ( inv (equal-iterate-transposition-a pa r ineq) ∙ ( ( ap ( iterate r (map-equiv (composition-transposition-a-b g))) ( inv (mult-lemma2 pa quo))) ∙ ( (inv ( iterate-add-ℕ ( r) ( quo *ℕ (pr1 (minimal-element-iterate g a b pa))) ( map-equiv (composition-transposition-a-b g)) a)) ∙ ( ( ap ( λ n → iterate ( n) ( map-equiv (composition-transposition-a-b g)) ( a)) ( commutative-add-ℕ ( r) ( quo *ℕ (pr1 (minimal-element-iterate g a b pa))) ∙ ( eq-euclidean-division-ℕ ( pr1 (minimal-element-iterate g a b pa)) ( k)))) ∙ ( q)))))) where r : ℕ r = remainder-euclidean-division-ℕ ( pr1 (minimal-element-iterate g a b pa)) ( k) quo : ℕ quo = quotient-euclidean-division-ℕ ( pr1 (minimal-element-iterate g a b pa)) ( k) ineq : le-ℕ r (pr1 (minimal-element-iterate g a b pa)) ineq = strict-upper-bound-remainder-euclidean-division-ℕ ( pr1 (minimal-element-iterate g a b pa)) ( k) ( λ p → np ( tr ( λ v → Id (iterate v (map-equiv g) a) b) ( p) ( pr1 (pr2 (minimal-element-iterate g a b pa))))) coproduct-sim-equivalence-relation-a-b-Prop : ( g : X ≃ X) → ( P : sim-equivalence-relation ( same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g)) ( a) ( b)) (x : X) → Prop l1 coproduct-sim-equivalence-relation-a-b-Prop g P x = coproduct-Prop ( prop-equivalence-relation (same-orbits-permutation-count (composition-transposition-a-b g)) x a) ( prop-equivalence-relation (same-orbits-permutation-count (composition-transposition-a-b g)) x b) ( λ T1 T2 → not-same-orbits-transposition-same-orbits g P ( transitive-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( _) ( _) ( _) ( T2) ( symmetric-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( _) ( _) ( T1)))) abstract split-orbits-a-b-transposition : (g : X ≃ X) → (P : sim-equivalence-relation ( same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g)) ( a) ( b)) (x : X) → ( ( sim-equivalence-relation (same-orbits-permutation-count g) x a) ≃ ( ( sim-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( x) ( a)) + ( sim-equivalence-relation ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( x) ( b)))) split-orbits-a-b-transposition g P x = pair ( λ T → apply-universal-property-trunc-Prop T ( coproduct-sim-equivalence-relation-a-b-Prop g P x) (λ pa → lemma2 g (pair (pr1 pa) (inl (pr2 pa))))) ( is-equiv-has-converse-is-prop is-prop-type-trunc-Prop ( is-prop-type-Prop ( coproduct-sim-equivalence-relation-a-b-Prop g P x)) ( λ where ( inl T) → apply-universal-property-trunc-Prop T ( prop-equivalence-relation ( same-orbits-permutation-count g) x a) ( λ pa → lemma3 ( lemma2 ( composition-transposition-a-b g) ( pair (pr1 pa) (inl (pr2 pa))))) ( inr T) → apply-universal-property-trunc-Prop T ( prop-equivalence-relation ( same-orbits-permutation-count g) x a) ( λ pa → lemma3 ( lemma2 ( composition-transposition-a-b g) ( (pr1 pa) , (inr (pr2 pa))))))) where minimal-element-iterate-2-a-b : ( g : X ≃ X) → ( Σ ( ℕ) ( λ k → ( Id (iterate k (map-equiv g) x) a) + ( Id (iterate k (map-equiv g) x) b))) → minimal-element-ℕ ( λ k → ( Id (iterate k (map-equiv g) x) a) + ( Id (iterate k (map-equiv g) x) b)) minimal-element-iterate-2-a-b g = minimal-element-iterate-2 g x a b equal-iterate-transposition-same-orbits : ( g : X ≃ X) ( pa : Σ ( ℕ) ( λ k → ( Id (iterate k (map-equiv g) x) a) + ( Id (iterate k (map-equiv g) x) b))) ( k : ℕ) → ( le-ℕ k (pr1 (minimal-element-iterate-2-a-b g pa))) → Id ( iterate k (map-equiv (composition-transposition-a-b g)) x) ( iterate k (map-equiv g) x) equal-iterate-transposition-same-orbits g pa k ineq = equal-iterate-transposition x g ( λ k' → le-ℕ k' (pr1 (minimal-element-iterate-2-a-b g pa))) ( λ k' p → pair ( λ q → contradiction-le-ℕ k' ( pr1 (minimal-element-iterate-2-a-b g pa)) ( p) ( pr2 (pr2 (minimal-element-iterate-2-a-b g pa)) k' (inl q))) ( λ r → contradiction-le-ℕ k' ( pr1 (minimal-element-iterate-2-a-b g pa)) ( p) ( pr2 (pr2 (minimal-element-iterate-2-a-b g pa)) k' (inr r)))) ( λ k' ineq' _ → transitive-le-ℕ k' ( succ-ℕ k') ( pr1 (minimal-element-iterate-2-a-b g pa)) ( succ-le-ℕ k') ( ineq')) k (inr ineq) lemma2 : ( g : X ≃ X) ( pa : Σ ( ℕ) (λ k → ( Id (iterate k (map-equiv g) x) a) + ( Id (iterate k (map-equiv g) x) b))) → ( sim-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( x) ( a)) + ( sim-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( x) ( b)) lemma2 g pa = cases-lemma2 ( has-decidable-equality-ℕ ( pr1 (minimal-element-iterate-2-a-b g pa)) ( zero-ℕ)) ( pr1 (pr2 (minimal-element-iterate-2-a-b g pa))) ( refl) where cases-lemma2 : is-decidable (Id (pr1 (minimal-element-iterate-2-a-b g pa)) zero-ℕ) → (c : ( Id ( iterate ( pr1 (minimal-element-iterate-2-a-b g pa)) ( map-equiv g) ( x)) ( a)) + ( Id ( iterate ( pr1 (minimal-element-iterate-2-a-b g pa)) ( map-equiv g) ( x)) ( b))) → Id c (pr1 (pr2 (minimal-element-iterate-2-a-b g pa))) → ( sim-equivalence-relation ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( x) ( a)) + ( sim-equivalence-relation ( same-orbits-permutation-count (composition-transposition-a-b g)) ( x) ( b)) cases-lemma2 (inl q) (inl c) r = inl ( unit-trunc-Prop ( pair zero-ℕ (tr (λ z → Id (iterate z (map-equiv g) x) a) q c))) cases-lemma2 (inl q) (inr c) r = inr ( unit-trunc-Prop ( pair zero-ℕ (tr (λ z → Id (iterate z (map-equiv g) x) b) q c))) cases-lemma2 (inr q) (inl c) r = inr (unit-trunc-Prop ( pair ( pr1 (minimal-element-iterate-2-a-b g pa)) ( ap ( λ n → iterate n (map-equiv (composition-transposition-a-b g)) x) ( pr2 (is-successor-k1) ∙ commutative-add-ℕ (pr1 is-successor-k1) (succ-ℕ zero-ℕ)) ∙ ( iterate-add-ℕ ( succ-ℕ zero-ℕ) ( pr1 is-successor-k1) ( map-equiv (composition-transposition-a-b g)) ( x) ∙ ( ap ( map-equiv (composition-transposition-a-b g)) ( equal-iterate-transposition-same-orbits ( g) ( pa) ( pr1 is-successor-k1) ( tr ( le-ℕ (pr1 is-successor-k1)) ( inv (pr2 is-successor-k1)) ( succ-le-ℕ (pr1 is-successor-k1)))) ∙ ( ap ( λ n → map-standard-transposition ( has-decidable-equality-count eX) ( np) ( iterate n (map-equiv g) x)) ( inv (pr2 is-successor-k1)) ∙ ( ap ( map-standard-transposition ( has-decidable-equality-count eX) ( np)) ( c) ∙ left-computation-standard-transposition ( has-decidable-equality-count eX) ( np)))))))) where is-successor-k1 : is-successor-ℕ (pr1 (minimal-element-iterate-2-a-b g pa)) is-successor-k1 = is-successor-is-nonzero-ℕ q cases-lemma2 (inr q) (inr c) r = inl (unit-trunc-Prop ( pair ( pr1 (minimal-element-iterate-2-a-b g pa)) ( ap ( λ n → iterate n (map-equiv (composition-transposition-a-b g)) x) ( pr2 (is-successor-k1) ∙ commutative-add-ℕ (pr1 is-successor-k1) (succ-ℕ zero-ℕ)) ∙ ( (iterate-add-ℕ ( succ-ℕ zero-ℕ) ( pr1 is-successor-k1) ( map-equiv (composition-transposition-a-b g)) ( x)) ∙ ( ap ( map-equiv (composition-transposition-a-b g)) ( equal-iterate-transposition-same-orbits ( g) ( pa) ( pr1 is-successor-k1) ( tr ( le-ℕ (pr1 is-successor-k1)) ( inv (pr2 is-successor-k1)) ( succ-le-ℕ (pr1 is-successor-k1)))) ∙ ( ap ( λ n → map-standard-transposition ( has-decidable-equality-count eX) ( np) ( iterate n (map-equiv g) x)) ( inv (pr2 is-successor-k1)) ∙ ( ( ap ( map-standard-transposition ( has-decidable-equality-count eX) ( np)) ( c)) ∙ right-computation-standard-transposition ( has-decidable-equality-count eX) ( np)))))))) where is-successor-k1 : is-successor-ℕ (pr1 (minimal-element-iterate-2-a-b g pa)) is-successor-k1 = is-successor-is-nonzero-ℕ q lemma3 : ( ( sim-equivalence-relation ( same-orbits-permutation-count ( composition-transposition-a-b ( composition-transposition-a-b g))) ( x) ( a)) + ( sim-equivalence-relation ( same-orbits-permutation-count ( composition-transposition-a-b ( composition-transposition-a-b g))) ( x) ( b))) → sim-equivalence-relation (same-orbits-permutation-count g) x a lemma3 (inl T) = tr (λ f → sim-equivalence-relation (same-orbits-permutation-count f) x a) { x = composition-transposition-a-b (composition-transposition-a-b g)} {y = g} ( eq-htpy-equiv (composition-transposition-a-b-involution g)) ( T) lemma3 (inr T) = transitive-equivalence-relation ( same-orbits-permutation-count g) ( _) ( _) ( _) ( symmetric-equivalence-relation ( same-orbits-permutation-count g) _ _ P) ( tr ( λ g → sim-equivalence-relation (same-orbits-permutation-count g) x b) { x = composition-transposition-a-b (composition-transposition-a-b g)} {y = g} ( eq-htpy-equiv (composition-transposition-a-b-involution g)) ( T)) private module _ ( g : X ≃ X) ( P : sim-equivalence-relation ( same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g)) ( a) ( b)) ( h : count ( equivalence-class ( same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g)))) where h'-inl : ( k : Fin (number-of-elements-count h)) ( T : equivalence-class (same-orbits-permutation-count g)) → Id (map-equiv-count h k) T → is-decidable ( is-in-equivalence-class (same-orbits-permutation-count g) T a) → is-decidable ( is-in-equivalence-class (same-orbits-permutation-count g) T b) → equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) h'-inl k T p (inl q) r = class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( a) h'-inl k T p (inr nq) (inl r) = ex-falso ( nq ( transitive-is-in-equivalence-class ( same-orbits-permutation-count g) ( T) ( b) ( a) ( r) ( symmetric-equivalence-relation ( same-orbits-permutation-count g) _ _ P))) h'-inl k T p (inr nq) (inr nr) = conserves-other-orbits-transposition-quotient g T nq nr h' : Fin (succ-ℕ (number-of-elements-count h)) → equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) h' (inl k) = h'-inl k (map-equiv-count h k) refl ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( map-equiv-count h k) ( a)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( map-equiv-count h k) ( b)) h' (inr k) = class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( b) cases-inv-h' : ( T : equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g))) → is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( a)) → is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( b)) → Fin (succ-ℕ (number-of-elements-count h)) cases-inv-h' T (inl Q) R = inl ( map-inv-equiv-count h (class (same-orbits-permutation-count g) a)) cases-inv-h' T (inr NQ) (inl R) = inr star cases-inv-h' T (inr NQ) (inr NR) = inl ( map-inv-equiv-count h ( pair ( pr1 T) ( tr ( λ f → is-equivalence-class ( same-orbits-permutation-count f) ( pr1 T)) { x = composition-transposition-a-b ( composition-transposition-a-b g)} { y = g} ( eq-htpy-equiv (composition-transposition-a-b-involution g)) ( pr2 ( conserves-other-orbits-transposition-quotient (composition-transposition-a-b g) T NQ NR))))) inv-h' : ( T : equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g))) → Fin (succ-ℕ (number-of-elements-count h)) inv-h' T = cases-inv-h' T ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( a)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( b)) H-conserves : ( T : equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g))) ( NQ : ¬ ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( a))) ( NR : ¬ ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( b))) → is-equivalence-class (same-orbits-permutation-count g) (pr1 T) H-conserves T NQ NR = tr ( λ f → is-equivalence-class (same-orbits-permutation-count f) (pr1 T)) { x = composition-transposition-a-b (composition-transposition-a-b g)} { y = g} ( eq-htpy-equiv (composition-transposition-a-b-involution g)) ( pr2 ( conserves-other-orbits-transposition-quotient (composition-transposition-a-b g) T NQ NR)) retraction-h'-inr-inr : ( T : equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g))) ( NQ : ¬ ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( a))) ( NR : ¬ ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( b))) → is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count g) ( pair (pr1 T) (H-conserves T NQ NR)) ( a)) → is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count g) ( pair (pr1 T) (H-conserves T NQ NR)) ( b)) → Id ( h' (inl (map-inv-equiv-count h ( pair ( pr1 T) ( tr ( λ f → is-equivalence-class ( same-orbits-permutation-count f) ( pr1 T)) { x = composition-transposition-a-b (composition-transposition-a-b g)} {y = g} ( eq-htpy-equiv (composition-transposition-a-b-involution g)) ( pr2 ( conserves-other-orbits-transposition-quotient (composition-transposition-a-b g) T NQ NR))))))) ( T) retraction-h'-inr-inr T NQ NR (inl Q') R' = ex-falso (NQ Q') retraction-h'-inr-inr T NQ NR (inr NQ') (inl R') = ex-falso (NR R') retraction-h'-inr-inr T NQ NR (inr NQ') (inr NR') = ( ap ( λ w → h'-inl ( map-inv-equiv-count h (pair (pr1 T) (H-conserves T NQ NR))) ( map-equiv (pr1 w) (pair (pr1 T) (H-conserves T NQ NR))) ( pr2 w) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( map-equiv (pr1 w) (pair (pr1 T) (H-conserves T NQ NR))) ( a)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( map-equiv (pr1 w) (pair (pr1 T) (H-conserves T NQ NR))) ( b))) { x = pair ((equiv-count h) ∘e (inv-equiv-count h)) refl} { y = pair id-equiv ( ap ( λ f → map-equiv f (pair (pr1 T) (H-conserves T NQ NR))) ( right-inverse-law-equiv (equiv-count h)))} ( eq-pair-Σ ( right-inverse-law-equiv (equiv-count h)) ( eq-is-prop ( is-prop-type-Prop ( Id-Prop ( equivalence-class-Set (same-orbits-permutation-count g)) ( map-equiv-count ( h) ( map-inv-equiv-count ( h) ( pair (pr1 T) (H-conserves T NQ NR)))) ( pair (pr1 T) (H-conserves T NQ NR))))))) ∙ ( ap (λ w → h'-inl ( map-inv-equiv-count h (pair (pr1 T) (H-conserves T NQ NR))) ( pair (pr1 T) (H-conserves T NQ NR)) ( ap ( λ f → map-equiv f (pair (pr1 T) (H-conserves T NQ NR))) ( right-inverse-law-equiv (equiv-count h))) ( w) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( pair (pr1 T) (H-conserves T NQ NR)) ( b))) { x = is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( pair (pr1 T) (H-conserves T NQ NR)) ( a)} { y = inr NQ'} ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count g) ( pair (pr1 T) (H-conserves T NQ NR)) ( a)))) ∙ ( (ap ( λ w → h'-inl ( map-inv-equiv-count h (pair (pr1 T) (H-conserves T NQ NR))) ( pair (pr1 T) (H-conserves T NQ NR)) ( ap ( λ f → map-equiv f (pair (pr1 T) (H-conserves T NQ NR))) ( right-inverse-law-equiv (equiv-count h))) ( inr NQ') ( w)) { x = is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( pair (pr1 T) (H-conserves T NQ NR)) ( b)} { y = inr NR'} ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count g) ( pair (pr1 T) (H-conserves T NQ NR)) ( b)))) ∙ ( eq-pair-eq-fiber ( eq-is-prop is-prop-type-trunc-Prop))))) retraction-h' : (T : equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g))) → is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( a)) → is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( T) ( b)) → Id (h' (inv-h' T)) T retraction-h' T (inl Q) R = tr (λ w → Id ( h' ( cases-inv-h' T w ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( b)))) ( T)) { x = inl Q} { y = is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( a)} ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( T) ( a)))) ( ap ( λ w → h'-inl ( map-inv-equiv-count h ( class (same-orbits-permutation-count g) a)) ( map-equiv ( pr1 w) ( class (same-orbits-permutation-count g) a)) (pr2 w) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( map-equiv ( pr1 w) ( class (same-orbits-permutation-count g) a)) ( a)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) g ( map-equiv ( pr1 w) ( class (same-orbits-permutation-count g) a)) ( b))) { x = pair ((equiv-count h) ∘e (inv-equiv-count h)) refl} { y = pair ( id-equiv) ( ap ( λ f → map-equiv f (class (same-orbits-permutation-count g) a)) ( right-inverse-law-equiv (equiv-count h)))} ( eq-pair-Σ ( right-inverse-law-equiv (equiv-count h)) ( eq-is-prop ( is-prop-type-Prop ( Id-Prop ( equivalence-class-Set (same-orbits-permutation-count g)) ( map-equiv-count h ( map-inv-equiv-count h ( class (same-orbits-permutation-count g) a))) ( class (same-orbits-permutation-count g) a))))) ∙ ( ap ( λ w → h'-inl ( map-inv-equiv-count ( h) ( class (same-orbits-permutation-count g) a)) ( class (same-orbits-permutation-count g) a) ( ap ( λ f → map-equiv f (class (same-orbits-permutation-count g) a)) ( right-inverse-law-equiv (equiv-count h))) ( w) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) (class (same-orbits-permutation-count g) a) ( b))) { x = is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( map-equiv id-equiv ( class (same-orbits-permutation-count g) a)) ( a)} { y = inl ( is-in-equivalence-class-eq-equivalence-class ( same-orbits-permutation-count g) ( a) ( class (same-orbits-permutation-count g) a) ( refl))} ( eq-is-prop ( is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count g) ( class (same-orbits-permutation-count g) a) a))) ∙ ( eq-effective-quotient' ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( a) ( T) ( Q)))) retraction-h' T (inr NQ) (inl R) = tr (λ w → Id (h' (cases-inv-h' T (pr1 w) (pr2 w))) T) {x = pair (inr NQ) (inl R)} {y = pair (is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( a)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( b))} ( eq-is-prop ( is-prop-Σ ( is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( T) ( a))) ( λ _ → is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( T) ( b))))) ( eq-effective-quotient' ( same-orbits-permutation-count (composition-transposition-a-b g)) ( b) ( T) ( R)) retraction-h' T (inr NQ) (inr NR) = tr (λ w → Id (h' (cases-inv-h' T (pr1 w) (pr2 w))) T) {x = pair (inr NQ) (inr NR)} {y = pair (is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( a)) (is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( composition-transposition-a-b g) ( T) ( b))} ( eq-is-prop ( is-prop-Σ ( is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( T) ( a))) ( λ _ → is-prop-is-decidable ( is-prop-is-in-equivalence-class ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( T) ( b))))) ( retraction-h'-inr-inr T NQ NR ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( pair (pr1 T) (H-conserves T NQ NR)) ( a)) ( is-decidable-is-in-equivalence-class-same-orbits-permutation ( number-of-elements-count eX) ( pair X (unit-trunc-Prop (equiv-count eX))) ( g) ( pair (pr1 T) (H-conserves T NQ NR)) b)) section-h'-inl : ( k : Fin (number-of-elements-count h)) ( Q : is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count g) ( map-equiv-count h k) ( a))) ( R : is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count g) ( map-equiv-count h k) ( b))) ( Q' : is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( h'-inl k (map-equiv-count h k) refl Q R) ( a))) ( R' : is-decidable ( is-in-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( h'-inl k (map-equiv-count h k) refl Q R) ( b))) → Id ( cases-inv-h' (h'-inl k (map-equiv-count h k) refl Q R) Q' R') ( inl k) section-h'-inl k (inl Q) R (inl Q') R' = ap inl ( is-injective-equiv (equiv-count h) ( ap ( λ f → map-equiv f (class (same-orbits-permutation-count g) a)) ( right-inverse-law-equiv (equiv-count h)) ∙ ( eq-effective-quotient' ( same-orbits-permutation-count g) ( a) ( map-equiv-count h k) ( Q)))) section-h'-inl k (inl Q) R (inr NQ') R' = ex-falso ( NQ' ( is-in-equivalence-class-eq-equivalence-class ( same-orbits-permutation-count (composition-transposition-a-b g)) ( a) ( class ( same-orbits-permutation-count ( composition-transposition-a-b g)) ( a)) ( refl))) section-h'-inl k (inr NQ) (inl R) Q' R' = ex-falso ( NQ ( transitive-is-in-equivalence-class ( same-orbits-permutation-count g) ( map-equiv-count h k) ( b) ( a) ( R) ( symmetric-equivalence-relation ( same-orbits-permutation-count g) _ _ P))) section-h'-inl k (inr NQ) (inr NR) (inl Q') R' = ex-falso (NQ Q') section-h'-inl k (inr NQ) (inr NR) (inr NQ') (inl R') = ex-falso (NR R') section-h'-inl k (inr NQ) (inr NR) (inr NQ') (inr NR') = ap ( inl) ( ap ( map-inv-equiv-count h) ( eq-pair-eq-fiber ( eq-is-prop is-prop-type-trunc-Prop)) ∙ ap (λ f → map-equiv f k) (left-inverse-law-equiv (equiv-count