The metric space of functions into the real numbers
Content created by Louis Wasserman.
Created on 2026-01-09.
Last modified on 2026-01-09.
module real-numbers.metric-space-of-functions-into-real-numbers where
Imports
open import foundation.universe-levels open import metric-spaces.complete-metric-spaces open import metric-spaces.dependent-products-complete-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.metric-spaces open import real-numbers.cauchy-completeness-dedekind-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
For any type I, the
metric space of functions into ℝ¶
I → ℝ is defined by the
product metric.
Definition
function-into-ℝ-Metric-Space : {l1 : Level} → UU l1 → (l2 : Level) → Metric-Space (l1 ⊔ lsuc l2) (l1 ⊔ l2) function-into-ℝ-Metric-Space I l = Π-Metric-Space I (λ _ → metric-space-ℝ l) function-into-ℝ-Complete-Metric-Space : {l1 : Level} → UU l1 → (l2 : Level) → Complete-Metric-Space (l1 ⊔ lsuc l2) (l1 ⊔ l2) function-into-ℝ-Complete-Metric-Space I l = Π-Complete-Metric-Space I (λ _ → complete-metric-space-ℝ l) abstract is-complete-function-into-ℝ-Metric-Space : {l1 : Level} (I : UU l1) (l2 : Level) → is-complete-Metric-Space (function-into-ℝ-Metric-Space I l2) is-complete-function-into-ℝ-Metric-Space I l = is-complete-metric-space-Complete-Metric-Space ( function-into-ℝ-Complete-Metric-Space I l)
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).