The metric space of functions into the real numbers

Content created by Louis Wasserman.

Created on 2026-01-09.
Last modified on 2026-01-09.

module real-numbers.metric-space-of-functions-into-real-numbers where
Imports
open import foundation.universe-levels

open import metric-spaces.complete-metric-spaces
open import metric-spaces.dependent-products-complete-metric-spaces
open import metric-spaces.dependent-products-metric-spaces
open import metric-spaces.metric-spaces

open import real-numbers.cauchy-completeness-dedekind-real-numbers
open import real-numbers.metric-space-of-real-numbers

Idea

For any type I, the metric space of functions into ℝ I → ℝ is defined by the product metric.

Definition

function-into-ℝ-Metric-Space :
  {l1 : Level}  UU l1  (l2 : Level)  Metric-Space (l1  lsuc l2) (l1  l2)
function-into-ℝ-Metric-Space I l = Π-Metric-Space I  _  metric-space-ℝ l)

function-into-ℝ-Complete-Metric-Space :
  {l1 : Level}  UU l1  (l2 : Level) 
  Complete-Metric-Space (l1  lsuc l2) (l1  l2)
function-into-ℝ-Complete-Metric-Space I l =
  Π-Complete-Metric-Space I  _  complete-metric-space-ℝ l)

abstract
  is-complete-function-into-ℝ-Metric-Space :
    {l1 : Level} (I : UU l1) (l2 : Level) 
    is-complete-Metric-Space (function-into-ℝ-Metric-Space I l2)
  is-complete-function-into-ℝ-Metric-Space I l =
    is-complete-metric-space-Complete-Metric-Space
      ( function-into-ℝ-Complete-Metric-Space I l)

Recent changes