Large locales
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-05-09.
Last modified on 2024-04-11.
module order-theory.large-locales where
Imports
open import foundation.identity-types open import foundation.large-binary-relations open import foundation.sets open import foundation.universe-levels open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-frames open import order-theory.large-meet-semilattices open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets open import order-theory.meet-semilattices open import order-theory.posets open import order-theory.preorders open import order-theory.suplattices open import order-theory.top-elements-large-posets open import order-theory.upper-bounds-large-posets
Idea
A large locale is a large meet-suplattice satisfying the distributive law for meets over suprema.
Definitions
Large locales
Large-Locale : (α : Level → Level) (β : Level → Level → Level) (γ : Level) → UUω Large-Locale = Large-Frame module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level} (L : Large-Locale α β γ) where large-poset-Large-Locale : Large-Poset α β large-poset-Large-Locale = large-poset-Large-Frame L large-preorder-Large-Locale : Large-Preorder α β large-preorder-Large-Locale = large-preorder-Large-Poset large-poset-Large-Locale set-Large-Locale : (l : Level) → Set (α l) set-Large-Locale = set-Large-Frame L type-Large-Locale : (l : Level) → UU (α l) type-Large-Locale = type-Large-Frame L is-set-type-Large-Locale : {l : Level} → is-set (type-Large-Locale l) is-set-type-Large-Locale = is-set-type-Large-Frame L leq-prop-Large-Locale : Large-Relation-Prop β type-Large-Locale leq-prop-Large-Locale = leq-prop-Large-Frame L leq-Large-Locale : Large-Relation β type-Large-Locale leq-Large-Locale = leq-Large-Frame L is-prop-leq-Large-Locale : is-prop-Large-Relation type-Large-Locale leq-Large-Locale is-prop-leq-Large-Locale = is-prop-leq-Large-Frame L leq-eq-Large-Locale : {l1 : Level} {x y : type-Large-Locale l1} → (x = y) → leq-Large-Locale x y leq-eq-Large-Locale = leq-eq-Large-Frame L refl-leq-Large-Locale : is-reflexive-Large-Relation type-Large-Locale leq-Large-Locale refl-leq-Large-Locale = refl-leq-Large-Frame L antisymmetric-leq-Large-Locale : is-antisymmetric-Large-Relation type-Large-Locale leq-Large-Locale antisymmetric-leq-Large-Locale = antisymmetric-leq-Large-Frame L transitive-leq-Large-Locale : is-transitive-Large-Relation type-Large-Locale leq-Large-Locale transitive-leq-Large-Locale = transitive-leq-Large-Frame L is-large-meet-semilattice-Large-Locale : is-large-meet-semilattice-Large-Poset large-poset-Large-Locale is-large-meet-semilattice-Large-Locale = is-large-meet-semilattice-Large-Frame L large-meet-semilattice-Large-Locale : Large-Meet-Semilattice α β large-meet-semilattice-Large-Locale = large-meet-semilattice-Large-Frame L has-meets-Large-Locale : has-meets-Large-Poset large-poset-Large-Locale has-meets-Large-Locale = has-meets-Large-Meet-Semilattice large-meet-semilattice-Large-Locale meet-Large-Locale : {l1 l2 : Level} → type-Large-Locale l1 → type-Large-Locale l2 → type-Large-Locale (l1 ⊔ l2) meet-Large-Locale = meet-Large-Frame L is-greatest-binary-lower-bound-meet-Large-Locale : {l1 l2 : Level} → (x : type-Large-Locale l1) (y : type-Large-Locale l2) → is-greatest-binary-lower-bound-Large-Poset ( large-poset-Large-Locale) ( x) ( y) ( meet-Large-Locale x y) is-greatest-binary-lower-bound-meet-Large-Locale = is-greatest-binary-lower-bound-meet-Large-Frame L ap-meet-Large-Locale : {l1 l2 : Level} → {x x' : type-Large-Locale l1} {y y' : type-Large-Locale l2} → (x = x') → (y = y') → (meet-Large-Locale x y = meet-Large-Locale x' y') ap-meet-Large-Locale = ap-meet-Large-Frame L has-top-element-Large-Locale : has-top-element-Large-Poset large-poset-Large-Locale has-top-element-Large-Locale = has-top-element-Large-Frame L top-Large-Locale : type-Large-Locale lzero top-Large-Locale = top-Large-Frame L is-top-element-top-Large-Locale : {l1 : Level} (x : type-Large-Locale l1) → leq-Large-Locale x top-Large-Locale is-top-element-top-Large-Locale = is-top-element-top-Large-Frame L large-suplattice-Large-Locale : Large-Suplattice α β γ large-suplattice-Large-Locale = large-suplattice-Large-Frame L is-large-suplattice-Large-Locale : is-large-suplattice-Large-Poset γ large-poset-Large-Locale is-large-suplattice-Large-Locale = is-large-suplattice-Large-Frame L sup-Large-Locale : {l1 l2 : Level} {I : UU l1} → (I → type-Large-Locale l2) → type-Large-Locale (γ ⊔ l1 ⊔ l2) sup-Large-Locale = sup-Large-Frame L is-least-upper-bound-sup-Large-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Locale l2) → is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-Large-Locale) ( x) ( sup-Large-Locale x) is-least-upper-bound-sup-Large-Locale = is-least-upper-bound-sup-Large-Frame L is-upper-bound-sup-Large-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Locale l2) → is-upper-bound-family-of-elements-Large-Poset ( large-poset-Large-Locale) ( x) ( sup-Large-Locale x) is-upper-bound-sup-Large-Locale = is-upper-bound-sup-Large-Frame L distributive-meet-sup-Large-Locale : {l1 l2 l3 : Level} (x : type-Large-Poset large-poset-Large-Locale l1) {I : UU l2} (y : I → type-Large-Poset large-poset-Large-Locale l3) → meet-Large-Locale x (sup-Large-Locale y) = sup-Large-Locale (λ i → meet-Large-Locale x (y i)) distributive-meet-sup-Large-Locale = distributive-meet-sup-Large-Frame L
Properties
Small constructions from large locales
module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level} (L : Large-Locale α β γ) where preorder-Large-Locale : (l : Level) → Preorder (α l) (β l l) preorder-Large-Locale = preorder-Large-Frame L poset-Large-Locale : (l : Level) → Poset (α l) (β l l) poset-Large-Locale = poset-Large-Frame L is-suplattice-poset-Large-Locale : (l1 l2 : Level) → is-suplattice-Poset l1 (poset-Large-Locale (γ ⊔ l1 ⊔ l2)) is-suplattice-poset-Large-Locale = is-suplattice-poset-Large-Frame L suplattice-Large-Locale : (l1 l2 : Level) → Suplattice (α (γ ⊔ l1 ⊔ l2)) (β (γ ⊔ l1 ⊔ l2) (γ ⊔ l1 ⊔ l2)) l1 suplattice-Large-Locale = suplattice-Large-Frame L is-meet-semilattice-poset-Large-Locale : (l : Level) → is-meet-semilattice-Poset (poset-Large-Locale l) is-meet-semilattice-poset-Large-Locale = is-meet-semilattice-poset-Large-Frame L order-theoretic-meet-semilattice-Large-Locale : (l : Level) → Order-Theoretic-Meet-Semilattice (α l) (β l l) order-theoretic-meet-semilattice-Large-Locale = order-theoretic-meet-semilattice-Large-Frame L meet-semilattice-Large-Locale : (l : Level) → Meet-Semilattice (α l) meet-semilattice-Large-Locale = meet-semilattice-Large-Frame L
Recent changes
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-08-01. Fredrik Bakke. Small constructions from large ones in order theory (#680).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).