Conjugate symmetric sesquilinear forms in complex vector spaces

Content created by Louis Wasserman.

Created on 2026-01-11.
Last modified on 2026-01-11.

module linear-algebra.conjugate-symmetric-sesquilinear-forms-complex-vector-spaces where
Imports
open import complex-numbers.complex-numbers
open import complex-numbers.conjugation-complex-numbers
open import complex-numbers.real-complex-numbers

open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import linear-algebra.complex-vector-spaces
open import linear-algebra.sesquilinear-forms-complex-vector-spaces

Idea

A sesquilinear form f in a complex vector space is conjugate symmetric if f x y is the complex conjugate of f y x for all x and y.

Definition

module _
  {l1 l2 : Level}
  (V : ℂ-Vector-Space l1 l2)
  (f : sesquilinear-form-ℂ-Vector-Space V)
  where

  is-conjugate-symmetric-prop-sesquilinear-form-ℂ-Vector-Space :
    Prop (lsuc l1  l2)
  is-conjugate-symmetric-prop-sesquilinear-form-ℂ-Vector-Space =
    Π-Prop
      ( type-ℂ-Vector-Space V)
      ( λ x 
        Π-Prop
          ( type-ℂ-Vector-Space V)
          ( λ y 
            Id-Prop
              ( ℂ-Set l1)
              ( map-sesquilinear-form-ℂ-Vector-Space V f x y)
              ( conjugate-ℂ (map-sesquilinear-form-ℂ-Vector-Space V f y x))))

  is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space : UU (lsuc l1  l2)
  is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space =
    type-Prop is-conjugate-symmetric-prop-sesquilinear-form-ℂ-Vector-Space

Properties

The diagonal of a conjugate symmetric sesquilinear form is real

module _
  {l1 l2 : Level}
  (V : ℂ-Vector-Space l1 l2)
  (f : sesquilinear-form-ℂ-Vector-Space V)
  where

  abstract
    is-real-diagonal-is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space :
      is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space V f 
      (v : type-ℂ-Vector-Space V) 
      is-real-ℂ (map-sesquilinear-form-ℂ-Vector-Space V f v v)
    is-real-diagonal-is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space
      H v = is-real-eq-conjugate-ℂ _ ( inv (H v v))

Recent changes