Conjugate symmetric sesquilinear forms in complex vector spaces
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
module linear-algebra.conjugate-symmetric-sesquilinear-forms-complex-vector-spaces where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.conjugation-complex-numbers open import complex-numbers.real-complex-numbers open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import linear-algebra.complex-vector-spaces open import linear-algebra.sesquilinear-forms-complex-vector-spaces
Idea
A
sesquilinear form
f in a complex vector space is
conjugate symmetric¶
if f x y is the
complex conjugate of f y x
for all x and y.
Definition
module _ {l1 l2 : Level} (V : ℂ-Vector-Space l1 l2) (f : sesquilinear-form-ℂ-Vector-Space V) where is-conjugate-symmetric-prop-sesquilinear-form-ℂ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-conjugate-symmetric-prop-sesquilinear-form-ℂ-Vector-Space = Π-Prop ( type-ℂ-Vector-Space V) ( λ x → Π-Prop ( type-ℂ-Vector-Space V) ( λ y → Id-Prop ( ℂ-Set l1) ( map-sesquilinear-form-ℂ-Vector-Space V f x y) ( conjugate-ℂ (map-sesquilinear-form-ℂ-Vector-Space V f y x)))) is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space : UU (lsuc l1 ⊔ l2) is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space = type-Prop is-conjugate-symmetric-prop-sesquilinear-form-ℂ-Vector-Space
Properties
The diagonal of a conjugate symmetric sesquilinear form is real
module _ {l1 l2 : Level} (V : ℂ-Vector-Space l1 l2) (f : sesquilinear-form-ℂ-Vector-Space V) where abstract is-real-diagonal-is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space : is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space V f → (v : type-ℂ-Vector-Space V) → is-real-ℂ (map-sesquilinear-form-ℂ-Vector-Space V f v v) is-real-diagonal-is-conjugate-symmetric-sesquilinear-form-ℂ-Vector-Space H v = is-real-eq-conjugate-ℂ _ ( inv (H v v))
External links
- Conjugate symmetry on Wikipedia
Recent changes
- 2026-01-11. Louis Wasserman. Complex inner product spaces (#1754).