Modular arithmetic
Content created by Egbert Rijke, Fredrik Bakke, Bryan Lu, Jonathan Prieto-Cubides, malarbol, Gregor Perčič, Julian KG, fernabnor and louismntnu.
Created on 2022-01-26.
Last modified on 2024-04-09.
module elementary-number-theory.modular-arithmetic where
Imports
open import elementary-number-theory.absolute-value-integers open import elementary-number-theory.addition-integers open import elementary-number-theory.congruence-integers open import elementary-number-theory.congruence-natural-numbers open import elementary-number-theory.divisibility-integers open import elementary-number-theory.equality-integers open import elementary-number-theory.inequality-integers open import elementary-number-theory.integers open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-integers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.discrete-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.injective-maps open import foundation.negated-equality open import foundation.negation open import foundation.sets open import foundation.surjective-maps open import foundation.unit-type open import foundation.universe-levels open import structured-types.types-equipped-with-endomorphisms open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
Modular arithmetic is arithmetic of the integers modulo n
. The integers
modulo n
have addition, negatives, and multiplication that satisfy many of the
familiar properties of usual arithmetic of the
integers.
Some modular arithmetic was already defined in
modular-arithmetic-standard-finite-types
. Here we collect those results in a
more convenient format that also includes the integers modulo 0
, i.e., the
integers.
The fact that ℤ-Mod n
is a ring for every n : ℕ
is
recorded in
elementary-number-theory.standard-cyclic-rings
.
ℤ-Mod : ℕ → UU lzero ℤ-Mod zero-ℕ = ℤ ℤ-Mod (succ-ℕ k) = Fin (succ-ℕ k)
Important integers modulo k
zero-ℤ-Mod : (k : ℕ) → ℤ-Mod k zero-ℤ-Mod zero-ℕ = zero-ℤ zero-ℤ-Mod (succ-ℕ k) = zero-Fin k is-zero-ℤ-Mod : (k : ℕ) → ℤ-Mod k → UU lzero is-zero-ℤ-Mod k x = (x = zero-ℤ-Mod k) is-nonzero-ℤ-Mod : (k : ℕ) → ℤ-Mod k → UU lzero is-nonzero-ℤ-Mod k x = ¬ (is-zero-ℤ-Mod k x) neg-one-ℤ-Mod : (k : ℕ) → ℤ-Mod k neg-one-ℤ-Mod zero-ℕ = neg-one-ℤ neg-one-ℤ-Mod (succ-ℕ k) = neg-one-Fin k one-ℤ-Mod : (k : ℕ) → ℤ-Mod k one-ℤ-Mod zero-ℕ = one-ℤ one-ℤ-Mod (succ-ℕ k) = one-Fin k
The integers modulo k have decidable equality
has-decidable-equality-ℤ-Mod : (k : ℕ) → has-decidable-equality (ℤ-Mod k) has-decidable-equality-ℤ-Mod zero-ℕ = has-decidable-equality-ℤ has-decidable-equality-ℤ-Mod (succ-ℕ k) = has-decidable-equality-Fin (succ-ℕ k)
The integers modulo k
are a discrete type
ℤ-Mod-Discrete-Type : (k : ℕ) → Discrete-Type lzero ℤ-Mod-Discrete-Type zero-ℕ = ℤ-Discrete-Type ℤ-Mod-Discrete-Type (succ-ℕ k) = Fin-Discrete-Type (succ-ℕ k)
The integers modulo k
form a set
abstract is-set-ℤ-Mod : (k : ℕ) → is-set (ℤ-Mod k) is-set-ℤ-Mod zero-ℕ = is-set-ℤ is-set-ℤ-Mod (succ-ℕ k) = is-set-Fin (succ-ℕ k) ℤ-Mod-Set : (k : ℕ) → Set lzero pr1 (ℤ-Mod-Set k) = ℤ-Mod k pr2 (ℤ-Mod-Set k) = is-set-ℤ-Mod k
The types ℤ-Mod k
are finite for nonzero natural numbers k
abstract is-finite-ℤ-Mod : {k : ℕ} → is-nonzero-ℕ k → is-finite (ℤ-Mod k) is-finite-ℤ-Mod {zero-ℕ} H = ex-falso (H refl) is-finite-ℤ-Mod {succ-ℕ k} H = is-finite-Fin (succ-ℕ k) ℤ-Mod-𝔽 : (k : ℕ) → is-nonzero-ℕ k → 𝔽 lzero pr1 (ℤ-Mod-𝔽 k H) = ℤ-Mod k pr2 (ℤ-Mod-𝔽 k H) = is-finite-ℤ-Mod H
The inclusion of the integers modulo k
into ℤ
int-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ int-ℤ-Mod zero-ℕ x = x int-ℤ-Mod (succ-ℕ k) x = int-ℕ (nat-Fin (succ-ℕ k) x) is-injective-int-ℤ-Mod : (k : ℕ) → is-injective (int-ℤ-Mod k) is-injective-int-ℤ-Mod zero-ℕ = is-injective-id is-injective-int-ℤ-Mod (succ-ℕ k) = is-injective-comp (is-injective-nat-Fin (succ-ℕ k)) is-injective-int-ℕ is-zero-int-zero-ℤ-Mod : (k : ℕ) → is-zero-ℤ (int-ℤ-Mod k (zero-ℤ-Mod k)) is-zero-int-zero-ℤ-Mod (zero-ℕ) = refl is-zero-int-zero-ℤ-Mod (succ-ℕ k) = ap int-ℕ (is-zero-nat-zero-Fin {k}) int-ℤ-Mod-bounded : (k : ℕ) → (x : ℤ-Mod (succ-ℕ k)) → leq-ℤ (int-ℤ-Mod (succ-ℕ k) x) (int-ℕ (succ-ℕ k)) int-ℤ-Mod-bounded zero-ℕ (inr x) = star int-ℤ-Mod-bounded (succ-ℕ k) (inl x) = is-nonnegative-succ-is-nonnegative-ℤ ( int-ℤ-Mod-bounded k x) int-ℤ-Mod-bounded (succ-ℕ k) (inr x) = is-nonnegative-succ-is-nonnegative-ℤ ( is-nonnegative-eq-ℤ (inv (left-inverse-law-add-ℤ (inl k))) star)
The successor and predecessor functions on the integers modulo k
succ-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ-Mod k succ-ℤ-Mod zero-ℕ = succ-ℤ succ-ℤ-Mod (succ-ℕ k) = succ-Fin (succ-ℕ k) ℤ-Mod-Type-With-Endomorphism : (k : ℕ) → Type-With-Endomorphism lzero pr1 (ℤ-Mod-Type-With-Endomorphism k) = ℤ-Mod k pr2 (ℤ-Mod-Type-With-Endomorphism k) = succ-ℤ-Mod k abstract is-equiv-succ-ℤ-Mod : (k : ℕ) → is-equiv (succ-ℤ-Mod k) is-equiv-succ-ℤ-Mod zero-ℕ = is-equiv-succ-ℤ is-equiv-succ-ℤ-Mod (succ-ℕ k) = is-equiv-succ-Fin (succ-ℕ k) equiv-succ-ℤ-Mod : (k : ℕ) → ℤ-Mod k ≃ ℤ-Mod k pr1 (equiv-succ-ℤ-Mod k) = succ-ℤ-Mod k pr2 (equiv-succ-ℤ-Mod k) = is-equiv-succ-ℤ-Mod k pred-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ-Mod k pred-ℤ-Mod zero-ℕ = pred-ℤ pred-ℤ-Mod (succ-ℕ k) = pred-Fin (succ-ℕ k) is-section-pred-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → succ-ℤ-Mod k (pred-ℤ-Mod k x) = x is-section-pred-ℤ-Mod zero-ℕ = is-section-pred-ℤ is-section-pred-ℤ-Mod (succ-ℕ k) = is-section-pred-Fin (succ-ℕ k) is-retraction-pred-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → pred-ℤ-Mod k (succ-ℤ-Mod k x) = x is-retraction-pred-ℤ-Mod zero-ℕ = is-retraction-pred-ℤ is-retraction-pred-ℤ-Mod (succ-ℕ k) = is-retraction-pred-Fin (succ-ℕ k) abstract is-equiv-pred-ℤ-Mod : (k : ℕ) → is-equiv (pred-ℤ-Mod k) is-equiv-pred-ℤ-Mod zero-ℕ = is-equiv-pred-ℤ is-equiv-pred-ℤ-Mod (succ-ℕ k) = is-equiv-pred-Fin (succ-ℕ k) equiv-pred-ℤ-Mod : (k : ℕ) → ℤ-Mod k ≃ ℤ-Mod k pr1 (equiv-pred-ℤ-Mod k) = pred-ℤ-Mod k pr2 (equiv-pred-ℤ-Mod k) = is-equiv-pred-ℤ-Mod k
Addition on the integers modulo k
add-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ-Mod k → ℤ-Mod k add-ℤ-Mod zero-ℕ = add-ℤ add-ℤ-Mod (succ-ℕ k) = add-Fin (succ-ℕ k) add-ℤ-Mod' : (k : ℕ) → ℤ-Mod k → ℤ-Mod k → ℤ-Mod k add-ℤ-Mod' k x y = add-ℤ-Mod k y x ap-add-ℤ-Mod : (k : ℕ) {x x' y y' : ℤ-Mod k} → x = x' → y = y' → add-ℤ-Mod k x y = add-ℤ-Mod k x' y' ap-add-ℤ-Mod k p q = ap-binary (add-ℤ-Mod k) p q abstract is-equiv-left-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → is-equiv (add-ℤ-Mod k x) is-equiv-left-add-ℤ-Mod zero-ℕ = is-equiv-left-add-ℤ is-equiv-left-add-ℤ-Mod (succ-ℕ k) = is-equiv-add-Fin (succ-ℕ k) equiv-left-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → ℤ-Mod k ≃ ℤ-Mod k pr1 (equiv-left-add-ℤ-Mod k x) = add-ℤ-Mod k x pr2 (equiv-left-add-ℤ-Mod k x) = is-equiv-left-add-ℤ-Mod k x abstract is-equiv-add-ℤ-Mod' : (k : ℕ) (x : ℤ-Mod k) → is-equiv (add-ℤ-Mod' k x) is-equiv-add-ℤ-Mod' zero-ℕ = is-equiv-right-add-ℤ is-equiv-add-ℤ-Mod' (succ-ℕ k) = is-equiv-add-Fin' (succ-ℕ k) equiv-add-ℤ-Mod' : (k : ℕ) (x : ℤ-Mod k) → ℤ-Mod k ≃ ℤ-Mod k pr1 (equiv-add-ℤ-Mod' k x) = add-ℤ-Mod' k x pr2 (equiv-add-ℤ-Mod' k x) = is-equiv-add-ℤ-Mod' k x is-injective-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → is-injective (add-ℤ-Mod k x) is-injective-add-ℤ-Mod zero-ℕ = is-injective-left-add-ℤ is-injective-add-ℤ-Mod (succ-ℕ k) = is-injective-add-Fin (succ-ℕ k) is-injective-add-ℤ-Mod' : (k : ℕ) (x : ℤ-Mod k) → is-injective (add-ℤ-Mod' k x) is-injective-add-ℤ-Mod' zero-ℕ = is-injective-right-add-ℤ is-injective-add-ℤ-Mod' (succ-ℕ k) = is-injective-add-Fin' (succ-ℕ k)
The negative of an integer modulo k
neg-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ-Mod k neg-ℤ-Mod zero-ℕ = neg-ℤ neg-ℤ-Mod (succ-ℕ k) = neg-Fin (succ-ℕ k) abstract is-equiv-neg-ℤ-Mod : (k : ℕ) → is-equiv (neg-ℤ-Mod k) is-equiv-neg-ℤ-Mod zero-ℕ = is-equiv-neg-ℤ is-equiv-neg-ℤ-Mod (succ-ℕ k) = is-equiv-neg-Fin (succ-ℕ k) equiv-neg-ℤ-Mod : (k : ℕ) → ℤ-Mod k ≃ ℤ-Mod k pr1 (equiv-neg-ℤ-Mod k) = neg-ℤ-Mod k pr2 (equiv-neg-ℤ-Mod k) = is-equiv-neg-ℤ-Mod k
Laws of addition modulo k
associative-add-ℤ-Mod : (k : ℕ) (x y z : ℤ-Mod k) → add-ℤ-Mod k (add-ℤ-Mod k x y) z = add-ℤ-Mod k x (add-ℤ-Mod k y z) associative-add-ℤ-Mod zero-ℕ = associative-add-ℤ associative-add-ℤ-Mod (succ-ℕ k) = associative-add-Fin (succ-ℕ k) commutative-add-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → add-ℤ-Mod k x y = add-ℤ-Mod k y x commutative-add-ℤ-Mod zero-ℕ = commutative-add-ℤ commutative-add-ℤ-Mod (succ-ℕ k) = commutative-add-Fin (succ-ℕ k) left-unit-law-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → add-ℤ-Mod k (zero-ℤ-Mod k) x = x left-unit-law-add-ℤ-Mod zero-ℕ = left-unit-law-add-ℤ left-unit-law-add-ℤ-Mod (succ-ℕ k) = left-unit-law-add-Fin k right-unit-law-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → add-ℤ-Mod k x (zero-ℤ-Mod k) = x right-unit-law-add-ℤ-Mod zero-ℕ = right-unit-law-add-ℤ right-unit-law-add-ℤ-Mod (succ-ℕ k) = right-unit-law-add-Fin k left-inverse-law-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → add-ℤ-Mod k (neg-ℤ-Mod k x) x = zero-ℤ-Mod k left-inverse-law-add-ℤ-Mod zero-ℕ = left-inverse-law-add-ℤ left-inverse-law-add-ℤ-Mod (succ-ℕ k) = left-inverse-law-add-Fin k right-inverse-law-add-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → add-ℤ-Mod k x (neg-ℤ-Mod k x) = zero-ℤ-Mod k right-inverse-law-add-ℤ-Mod zero-ℕ = right-inverse-law-add-ℤ right-inverse-law-add-ℤ-Mod (succ-ℕ k) = right-inverse-law-add-Fin k left-successor-law-add-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → add-ℤ-Mod k (succ-ℤ-Mod k x) y = succ-ℤ-Mod k (add-ℤ-Mod k x y) left-successor-law-add-ℤ-Mod zero-ℕ = left-successor-law-add-ℤ left-successor-law-add-ℤ-Mod (succ-ℕ k) = left-successor-law-add-Fin (succ-ℕ k) right-successor-law-add-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → add-ℤ-Mod k x (succ-ℤ-Mod k y) = succ-ℤ-Mod k (add-ℤ-Mod k x y) right-successor-law-add-ℤ-Mod zero-ℕ = right-successor-law-add-ℤ right-successor-law-add-ℤ-Mod (succ-ℕ k) = right-successor-law-add-Fin (succ-ℕ k) left-predecessor-law-add-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → add-ℤ-Mod k (pred-ℤ-Mod k x) y = pred-ℤ-Mod k (add-ℤ-Mod k x y) left-predecessor-law-add-ℤ-Mod zero-ℕ = left-predecessor-law-add-ℤ left-predecessor-law-add-ℤ-Mod (succ-ℕ k) = left-predecessor-law-add-Fin (succ-ℕ k) right-predecessor-law-add-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → add-ℤ-Mod k x (pred-ℤ-Mod k y) = pred-ℤ-Mod k (add-ℤ-Mod k x y) right-predecessor-law-add-ℤ-Mod zero-ℕ = right-predecessor-law-add-ℤ right-predecessor-law-add-ℤ-Mod (succ-ℕ k) = right-predecessor-law-add-Fin (succ-ℕ k) is-left-add-one-succ-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → succ-ℤ-Mod k x = add-ℤ-Mod k (one-ℤ-Mod k) x is-left-add-one-succ-ℤ-Mod zero-ℕ = is-left-add-one-succ-ℤ is-left-add-one-succ-ℤ-Mod (succ-ℕ k) = is-add-one-succ-Fin k is-left-add-one-succ-ℤ-Mod' : (k : ℕ) (x : ℤ-Mod k) → succ-ℤ-Mod k x = add-ℤ-Mod k x (one-ℤ-Mod k) is-left-add-one-succ-ℤ-Mod' zero-ℕ = is-right-add-one-succ-ℤ is-left-add-one-succ-ℤ-Mod' (succ-ℕ k) = is-add-one-succ-Fin' k is-left-add-neg-one-pred-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → pred-ℤ-Mod k x = add-ℤ-Mod k (neg-one-ℤ-Mod k) x is-left-add-neg-one-pred-ℤ-Mod zero-ℕ = is-left-add-neg-one-pred-ℤ is-left-add-neg-one-pred-ℤ-Mod (succ-ℕ k) = is-add-neg-one-pred-Fin k is-left-add-neg-one-pred-ℤ-Mod' : (k : ℕ) (x : ℤ-Mod k) → pred-ℤ-Mod k x = add-ℤ-Mod k x (neg-one-ℤ-Mod k) is-left-add-neg-one-pred-ℤ-Mod' zero-ℕ = is-right-add-neg-one-pred-ℤ is-left-add-neg-one-pred-ℤ-Mod' (succ-ℕ k) = is-add-neg-one-pred-Fin' k
Multiplication modulo k
mul-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ-Mod k → ℤ-Mod k mul-ℤ-Mod zero-ℕ = mul-ℤ mul-ℤ-Mod (succ-ℕ k) = mul-Fin (succ-ℕ k) mul-ℤ-Mod' : (k : ℕ) → ℤ-Mod k → ℤ-Mod k → ℤ-Mod k mul-ℤ-Mod' k x y = mul-ℤ-Mod k y x ap-mul-ℤ-Mod : (k : ℕ) {x x' y y' : ℤ-Mod k} → x = x' → y = y' → mul-ℤ-Mod k x y = mul-ℤ-Mod k x' y' ap-mul-ℤ-Mod k p q = ap-binary (mul-ℤ-Mod k) p q
Laws of multiplication modulo k
associative-mul-ℤ-Mod : (k : ℕ) (x y z : ℤ-Mod k) → mul-ℤ-Mod k (mul-ℤ-Mod k x y) z = mul-ℤ-Mod k x (mul-ℤ-Mod k y z) associative-mul-ℤ-Mod zero-ℕ = associative-mul-ℤ associative-mul-ℤ-Mod (succ-ℕ k) = associative-mul-Fin (succ-ℕ k) commutative-mul-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → mul-ℤ-Mod k x y = mul-ℤ-Mod k y x commutative-mul-ℤ-Mod zero-ℕ = commutative-mul-ℤ commutative-mul-ℤ-Mod (succ-ℕ k) = commutative-mul-Fin (succ-ℕ k) left-unit-law-mul-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → mul-ℤ-Mod k (one-ℤ-Mod k) x = x left-unit-law-mul-ℤ-Mod zero-ℕ = left-unit-law-mul-ℤ left-unit-law-mul-ℤ-Mod (succ-ℕ k) = left-unit-law-mul-Fin k right-unit-law-mul-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → mul-ℤ-Mod k x (one-ℤ-Mod k) = x right-unit-law-mul-ℤ-Mod zero-ℕ = right-unit-law-mul-ℤ right-unit-law-mul-ℤ-Mod (succ-ℕ k) = right-unit-law-mul-Fin k left-distributive-mul-add-ℤ-Mod : (k : ℕ) (x y z : ℤ-Mod k) → ( mul-ℤ-Mod k x (add-ℤ-Mod k y z)) = ( add-ℤ-Mod k (mul-ℤ-Mod k x y) (mul-ℤ-Mod k x z)) left-distributive-mul-add-ℤ-Mod zero-ℕ = left-distributive-mul-add-ℤ left-distributive-mul-add-ℤ-Mod (succ-ℕ k) = left-distributive-mul-add-Fin (succ-ℕ k) right-distributive-mul-add-ℤ-Mod : (k : ℕ) (x y z : ℤ-Mod k) → ( mul-ℤ-Mod k (add-ℤ-Mod k x y) z) = ( add-ℤ-Mod k (mul-ℤ-Mod k x z) (mul-ℤ-Mod k y z)) right-distributive-mul-add-ℤ-Mod zero-ℕ = right-distributive-mul-add-ℤ right-distributive-mul-add-ℤ-Mod (succ-ℕ k) = right-distributive-mul-add-Fin (succ-ℕ k) is-left-mul-neg-one-neg-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → neg-ℤ-Mod k x = mul-ℤ-Mod k (neg-one-ℤ-Mod k) x is-left-mul-neg-one-neg-ℤ-Mod zero-ℕ = inv ∘ left-neg-unit-law-mul-ℤ is-left-mul-neg-one-neg-ℤ-Mod (succ-ℕ k) = is-mul-neg-one-neg-Fin k is-left-mul-neg-one-neg-ℤ-Mod' : (k : ℕ) (x : ℤ-Mod k) → neg-ℤ-Mod k x = mul-ℤ-Mod k x (neg-one-ℤ-Mod k) is-left-mul-neg-one-neg-ℤ-Mod' zero-ℕ = inv ∘ right-neg-unit-law-mul-ℤ is-left-mul-neg-one-neg-ℤ-Mod' (succ-ℕ k) = is-mul-neg-one-neg-Fin' k
Congruence classes of integers modulo k
mod-ℕ : (k : ℕ) → ℕ → ℤ-Mod k mod-ℕ zero-ℕ x = int-ℕ x mod-ℕ (succ-ℕ k) x = mod-succ-ℕ k x mod-ℤ : (k : ℕ) → ℤ → ℤ-Mod k mod-ℤ zero-ℕ x = x mod-ℤ (succ-ℕ k) (inl x) = neg-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x)) mod-ℤ (succ-ℕ k) (inr (inl x)) = zero-Fin k mod-ℤ (succ-ℕ k) (inr (inr x)) = mod-succ-ℕ k (succ-ℕ x) mod-int-ℕ : (k x : ℕ) → mod-ℤ k (int-ℕ x) = mod-ℕ k x mod-int-ℕ zero-ℕ x = refl mod-int-ℕ (succ-ℕ k) zero-ℕ = refl mod-int-ℕ (succ-ℕ k) (succ-ℕ x) = refl
Preservation laws of congruence classes
mod-zero-ℕ : (k : ℕ) → mod-ℕ k zero-ℕ = zero-ℤ-Mod k mod-zero-ℕ zero-ℕ = refl mod-zero-ℕ (succ-ℕ k) = refl preserves-successor-mod-ℕ : (k x : ℕ) → mod-ℕ k (succ-ℕ x) = succ-ℤ-Mod k (mod-ℕ k x) preserves-successor-mod-ℕ zero-ℕ zero-ℕ = refl preserves-successor-mod-ℕ zero-ℕ (succ-ℕ x) = refl preserves-successor-mod-ℕ (succ-ℕ k) x = refl mod-refl-ℕ : (k : ℕ) → mod-ℕ k k = zero-ℤ-Mod k mod-refl-ℕ zero-ℕ = refl mod-refl-ℕ (succ-ℕ k) = is-zero-mod-succ-ℕ k (succ-ℕ k) (pair 1 (left-unit-law-mul-ℕ (succ-ℕ k))) mod-zero-ℤ : (k : ℕ) → mod-ℤ k zero-ℤ = zero-ℤ-Mod k mod-zero-ℤ zero-ℕ = refl mod-zero-ℤ (succ-ℕ k) = refl mod-one-ℤ : (k : ℕ) → mod-ℤ k one-ℤ = one-ℤ-Mod k mod-one-ℤ zero-ℕ = refl mod-one-ℤ (succ-ℕ k) = refl mod-neg-one-ℤ : (k : ℕ) → mod-ℤ k neg-one-ℤ = neg-one-ℤ-Mod k mod-neg-one-ℤ zero-ℕ = refl mod-neg-one-ℤ (succ-ℕ k) = ( neg-succ-Fin (succ-ℕ k) (zero-Fin k)) ∙ ( ( ap (pred-Fin (succ-ℕ k)) (neg-zero-Fin k)) ∙ ( ( is-add-neg-one-pred-Fin' k (zero-Fin k)) ∙ ( left-unit-law-add-Fin k (neg-one-Fin k)))) preserves-successor-mod-ℤ : (k : ℕ) (x : ℤ) → mod-ℤ k (succ-ℤ x) = succ-ℤ-Mod k (mod-ℤ k x) preserves-successor-mod-ℤ zero-ℕ x = refl preserves-successor-mod-ℤ (succ-ℕ k) (inl zero-ℕ) = inv (ap (succ-Fin (succ-ℕ k)) (is-neg-one-neg-one-Fin k)) preserves-successor-mod-ℤ (succ-ℕ k) (inl (succ-ℕ x)) = ( ap ( neg-Fin (succ-ℕ k)) ( inv ( is-retraction-pred-Fin ( succ-ℕ k) ( succ-Fin (succ-ℕ k) (mod-succ-ℕ k x))))) ∙ ( neg-pred-Fin ( succ-ℕ k) ( succ-Fin (succ-ℕ k) (succ-Fin (succ-ℕ k) (mod-succ-ℕ k x)))) preserves-successor-mod-ℤ (succ-ℕ k) (inr (inl star)) = refl preserves-successor-mod-ℤ (succ-ℕ k) (inr (inr x)) = refl preserves-predecessor-mod-ℤ : (k : ℕ) (x : ℤ) → mod-ℤ k (pred-ℤ x) = pred-ℤ-Mod k (mod-ℤ k x) preserves-predecessor-mod-ℤ zero-ℕ x = refl preserves-predecessor-mod-ℤ (succ-ℕ k) (inl x) = neg-succ-Fin (succ-ℕ k) (succ-Fin (succ-ℕ k) (mod-succ-ℕ k x)) preserves-predecessor-mod-ℤ (succ-ℕ k) (inr (inl star)) = ( is-neg-one-neg-one-Fin k) ∙ ( ( inv (left-unit-law-add-Fin k (neg-one-Fin k))) ∙ ( inv (is-add-neg-one-pred-Fin' k (zero-Fin k)))) preserves-predecessor-mod-ℤ (succ-ℕ k) (inr (inr zero-ℕ)) = inv ( ( ap ( pred-Fin (succ-ℕ k)) ( preserves-successor-mod-ℤ (succ-ℕ k) zero-ℤ)) ∙ ( is-retraction-pred-Fin (succ-ℕ k) (zero-Fin k))) preserves-predecessor-mod-ℤ (succ-ℕ k) (inr (inr (succ-ℕ x))) = inv (is-retraction-pred-Fin (succ-ℕ k) (succ-Fin (succ-ℕ k) (mod-succ-ℕ k x))) preserves-add-mod-ℤ : (k : ℕ) (x y : ℤ) → mod-ℤ k (x +ℤ y) = add-ℤ-Mod k (mod-ℤ k x) (mod-ℤ k y) preserves-add-mod-ℤ zero-ℕ x y = refl preserves-add-mod-ℤ (succ-ℕ k) (inl zero-ℕ) y = ( preserves-predecessor-mod-ℤ (succ-ℕ k) y) ∙ ( ( is-add-neg-one-pred-Fin k (mod-ℤ (succ-ℕ k) y)) ∙ ( ap ( add-Fin' (succ-ℕ k) (mod-ℤ (succ-ℕ k) y)) ( inv (mod-neg-one-ℤ (succ-ℕ k))))) preserves-add-mod-ℤ (succ-ℕ k) (inl (succ-ℕ x)) y = ( preserves-predecessor-mod-ℤ (succ-ℕ k) ((inl x) +ℤ y)) ∙ ( ( ap (pred-Fin (succ-ℕ k)) (preserves-add-mod-ℤ (succ-ℕ k) (inl x) y)) ∙ ( ( inv ( left-predecessor-law-add-Fin (succ-ℕ k) ( mod-ℤ (succ-ℕ k) (inl x)) ( mod-ℤ (succ-ℕ k) y))) ∙ ( ap ( add-Fin' (succ-ℕ k) (mod-ℤ (succ-ℕ k) y)) ( inv (preserves-predecessor-mod-ℤ (succ-ℕ k) (inl x)))))) preserves-add-mod-ℤ (succ-ℕ k) (inr (inl star)) y = inv (left-unit-law-add-Fin k (mod-ℤ (succ-ℕ k) y)) preserves-add-mod-ℤ (succ-ℕ k) (inr (inr zero-ℕ)) y = ( preserves-successor-mod-ℤ (succ-ℕ k) y) ∙ ( ( ap ( succ-Fin (succ-ℕ k)) ( inv (left-unit-law-add-Fin k (mod-ℤ (succ-ℕ k) y)))) ∙ ( inv ( left-successor-law-add-Fin ( succ-ℕ k) ( zero-Fin k) ( mod-ℤ (succ-ℕ k) y)))) preserves-add-mod-ℤ (succ-ℕ k) (inr (inr (succ-ℕ x))) y = ( preserves-successor-mod-ℤ (succ-ℕ k) ((inr (inr x)) +ℤ y)) ∙ ( ( ap ( succ-Fin (succ-ℕ k)) ( preserves-add-mod-ℤ (succ-ℕ k) (inr (inr x)) y)) ∙ ( inv ( left-successor-law-add-Fin (succ-ℕ k) ( mod-ℤ (succ-ℕ k) (inr (inr x))) ( mod-ℤ (succ-ℕ k) y)))) preserves-neg-mod-ℤ : (k : ℕ) (x : ℤ) → mod-ℤ k (neg-ℤ x) = neg-ℤ-Mod k (mod-ℤ k x) preserves-neg-mod-ℤ zero-ℕ x = refl preserves-neg-mod-ℤ (succ-ℕ k) x = is-injective-add-Fin (succ-ℕ k) ( mod-ℤ (succ-ℕ k) x) ( ( inv (preserves-add-mod-ℤ (succ-ℕ k) x (neg-ℤ x))) ∙ ( ( ap (mod-ℤ (succ-ℕ k)) (right-inverse-law-add-ℤ x)) ∙ ( inv (right-inverse-law-add-ℤ-Mod (succ-ℕ k) (mod-ℤ (succ-ℕ k) x))))) preserves-mul-mod-ℤ : (k : ℕ) (x y : ℤ) → mod-ℤ k (x *ℤ y) = mul-ℤ-Mod k (mod-ℤ k x) (mod-ℤ k y) preserves-mul-mod-ℤ zero-ℕ x y = refl preserves-mul-mod-ℤ (succ-ℕ k) (inl zero-ℕ) y = ( preserves-neg-mod-ℤ (succ-ℕ k) y) ∙ ( ( is-mul-neg-one-neg-Fin k (mod-ℤ (succ-ℕ k) y)) ∙ ( ap ( mul-ℤ-Mod' (succ-ℕ k) (mod-ℤ (succ-ℕ k) y)) ( inv (mod-neg-one-ℤ (succ-ℕ k))))) preserves-mul-mod-ℤ (succ-ℕ k) (inl (succ-ℕ x)) y = ( preserves-add-mod-ℤ (succ-ℕ k) (neg-ℤ y) ((inl x) *ℤ y)) ∙ ( ( ap-add-ℤ-Mod ( succ-ℕ k) ( preserves-neg-mod-ℤ (succ-ℕ k) y) ( preserves-mul-mod-ℤ (succ-ℕ k) (inl x) y)) ∙ ( ( inv ( left-predecessor-law-mul-Fin (succ-ℕ k) ( mod-ℤ (succ-ℕ k) (inl x)) ( mod-ℤ (succ-ℕ k) y))) ∙ ( ap ( mul-Fin' (succ-ℕ k) (mod-ℤ (succ-ℕ k) y)) ( inv (preserves-predecessor-mod-ℤ (succ-ℕ k) (inl x)))))) preserves-mul-mod-ℤ (succ-ℕ k) (inr (inl star)) y = inv (left-zero-law-mul-Fin k (mod-ℤ (succ-ℕ k) y)) preserves-mul-mod-ℤ (succ-ℕ k) (inr (inr zero-ℕ)) y = inv (left-unit-law-mul-Fin k (mod-ℤ (succ-ℕ k) y)) preserves-mul-mod-ℤ (succ-ℕ k) (inr (inr (succ-ℕ x))) y = ( preserves-add-mod-ℤ (succ-ℕ k) y ((inr (inr x)) *ℤ y)) ∙ ( ( ap ( add-ℤ-Mod (succ-ℕ k) (mod-ℤ (succ-ℕ k) y)) ( preserves-mul-mod-ℤ (succ-ℕ k) (inr (inr x)) y)) ∙ ( inv ( left-successor-law-mul-Fin (succ-ℕ k) ( mod-ℤ (succ-ℕ k) (inr (inr x))) ( mod-ℤ (succ-ℕ k) y))))
cong-int-mod-ℕ : (k x : ℕ) → cong-ℤ (int-ℕ k) (int-ℤ-Mod k (mod-ℕ k x)) (int-ℕ x) cong-int-mod-ℕ zero-ℕ x = refl-cong-ℤ zero-ℤ (int-ℕ x) cong-int-mod-ℕ (succ-ℕ k) x = cong-int-cong-ℕ ( succ-ℕ k) ( nat-Fin (succ-ℕ k) (mod-succ-ℕ k x)) ( x) ( cong-nat-mod-succ-ℕ k x) cong-int-mod-ℤ : (k : ℕ) (x : ℤ) → cong-ℤ (int-ℕ k) (int-ℤ-Mod k (mod-ℤ k x)) x cong-int-mod-ℤ zero-ℕ x = refl-cong-ℤ zero-ℤ x cong-int-mod-ℤ (succ-ℕ k) (inl x) = concatenate-eq-cong-ℤ ( int-ℕ (succ-ℕ k)) ( int-ℤ-Mod (succ-ℕ k) (mod-ℤ (succ-ℕ k) (inl x))) ( int-ℕ ( nat-Fin ( succ-ℕ k) ( mul-Fin (succ-ℕ k) (neg-one-Fin k) (mod-succ-ℕ k (succ-ℕ x))))) ( inl x) ( ap ( int-ℤ-Mod (succ-ℕ k)) ( preserves-mul-mod-ℤ (succ-ℕ k) neg-one-ℤ (inr (inr x)) ∙ ap ( mul-Fin' ( succ-ℕ k) ( mod-succ-ℕ k (succ-ℕ x))) ( mod-neg-one-ℤ (succ-ℕ k)))) ( transitive-cong-ℤ ( int-ℕ (succ-ℕ k)) ( int-ℕ ( nat-Fin ( succ-ℕ k) ( mul-Fin (succ-ℕ k) (neg-one-Fin k) (mod-succ-ℕ k (succ-ℕ x))))) ( int-ℕ (k *ℕ (nat-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x))))) ( inl x) ( transitive-cong-ℤ ( int-ℕ (succ-ℕ k)) ( int-ℕ (k *ℕ (nat-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x))))) ( int-ℕ (k *ℕ (succ-ℕ x))) ( inl x) ( pair ( inr (inr x)) ( ( commutative-mul-ℤ (inr (inr x)) (inr (inr k))) ∙ ( ( ap ( _*ℤ (inr (inr x))) ( inv (succ-int-ℕ k) ∙ commutative-add-ℤ one-ℤ (int-ℕ k))) ∙ ( ( right-distributive-mul-add-ℤ (int-ℕ k) one-ℤ (inr (inr x))) ∙ ( ap-add-ℤ ( mul-int-ℕ k (succ-ℕ x)) ( left-unit-law-mul-ℤ (inr (inr x)))))))) ( cong-int-cong-ℕ ( succ-ℕ k) ( k *ℕ (nat-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x)))) ( k *ℕ (succ-ℕ x)) ( congruence-mul-ℕ ( succ-ℕ k) { k} { nat-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x))} { k} { succ-ℕ x} ( refl-cong-ℕ (succ-ℕ k) k) ( cong-nat-mod-succ-ℕ k (succ-ℕ x))))) ( cong-int-cong-ℕ ( succ-ℕ k) ( nat-Fin ( succ-ℕ k) ( mul-Fin (succ-ℕ k) (neg-one-Fin k) (mod-succ-ℕ k (succ-ℕ x)))) ( k *ℕ (nat-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x)))) ( cong-mul-Fin (neg-one-Fin k) (mod-succ-ℕ k (succ-ℕ x))))) cong-int-mod-ℤ (succ-ℕ k) (inr (inl star)) = cong-int-cong-ℕ ( succ-ℕ k) ( nat-Fin (succ-ℕ k) (mod-succ-ℕ k zero-ℕ)) ( zero-ℕ) ( cong-nat-mod-succ-ℕ k zero-ℕ) cong-int-mod-ℤ (succ-ℕ k) (inr (inr x)) = cong-int-cong-ℕ ( succ-ℕ k) ( nat-Fin (succ-ℕ k) (mod-succ-ℕ k (succ-ℕ x))) ( succ-ℕ x) ( cong-nat-mod-succ-ℕ k (succ-ℕ x)) cong-eq-mod-ℤ : (k : ℕ) (x y : ℤ) → mod-ℤ k x = mod-ℤ k y → cong-ℤ (int-ℕ k) x y cong-eq-mod-ℤ k x y p = concatenate-cong-eq-cong-ℤ ( int-ℕ k) ( x) ( int-ℤ-Mod k (mod-ℤ k x)) ( int-ℤ-Mod k (mod-ℤ k y)) ( y) ( symmetric-cong-ℤ (int-ℕ k) (int-ℤ-Mod k (mod-ℤ k x)) ( x) ( cong-int-mod-ℤ k x)) ( ap (int-ℤ-Mod k) p) ( cong-int-mod-ℤ k y) eq-cong-int-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → cong-ℤ (int-ℕ k) (int-ℤ-Mod k x) (int-ℤ-Mod k y) → x = y eq-cong-int-ℤ-Mod zero-ℕ = is-discrete-cong-ℤ zero-ℤ refl eq-cong-int-ℤ-Mod (succ-ℕ k) x y H = eq-cong-nat-Fin (succ-ℕ k) x y ( cong-cong-int-ℕ ( succ-ℕ k) ( nat-Fin (succ-ℕ k) x) ( nat-Fin (succ-ℕ k) y) ( H)) eq-mod-cong-ℤ : (k : ℕ) (x y : ℤ) → cong-ℤ (int-ℕ k) x y → mod-ℤ k x = mod-ℤ k y eq-mod-cong-ℤ k x y H = eq-cong-int-ℤ-Mod k ( mod-ℤ k x) ( mod-ℤ k y) ( concatenate-cong-cong-cong-ℤ ( int-ℕ k) ( int-ℤ-Mod k (mod-ℤ k x)) ( x) ( y) ( int-ℤ-Mod k (mod-ℤ k y)) ( cong-int-mod-ℤ k x) ( H) ( symmetric-cong-ℤ ( int-ℕ k) ( int-ℤ-Mod k (mod-ℤ k y)) ( y) ( cong-int-mod-ℤ k y))) is-zero-mod-div-ℤ : (k : ℕ) (x : ℤ) → div-ℤ (int-ℕ k) x → is-zero-ℤ-Mod k (mod-ℤ k x) is-zero-mod-div-ℤ zero-ℕ x d = is-zero-div-zero-ℤ x d is-zero-mod-div-ℤ (succ-ℕ k) x H = eq-mod-cong-ℤ ( succ-ℕ k) ( x) ( zero-ℤ) ( is-cong-zero-div-ℤ (int-ℕ (succ-ℕ k)) x H) div-is-zero-mod-ℤ : (k : ℕ) (x : ℤ) → is-zero-ℤ-Mod k (mod-ℤ k x) → div-ℤ (int-ℕ k) x div-is-zero-mod-ℤ zero-ℕ .zero-ℤ refl = refl-div-ℤ zero-ℤ div-is-zero-mod-ℤ (succ-ℕ k) x p = div-is-cong-zero-ℤ ( int-ℕ (succ-ℕ k)) ( x) ( cong-eq-mod-ℤ (succ-ℕ k) x zero-ℤ p) is-section-int-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → mod-ℤ k (int-ℤ-Mod k x) = x is-section-int-ℤ-Mod k x = eq-cong-int-ℤ-Mod k ( mod-ℤ k (int-ℤ-Mod k x)) ( x) ( cong-int-mod-ℤ k (int-ℤ-Mod k x)) is-one-is-fixed-point-succ-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → succ-ℤ-Mod k x = x → is-one-ℕ k is-one-is-fixed-point-succ-ℤ-Mod k x p = is-one-is-unit-int-ℕ k ( is-unit-cong-succ-ℤ ( int-ℕ k) ( int-ℤ-Mod k x) ( cong-eq-mod-ℤ k ( int-ℤ-Mod k x) ( succ-ℤ (int-ℤ-Mod k x)) ( ( is-section-int-ℤ-Mod k x) ∙ ( ( inv p) ∙ ( inv ( ( preserves-successor-mod-ℤ k (int-ℤ-Mod k x)) ∙ ( ap (succ-ℤ-Mod k) (is-section-int-ℤ-Mod k x)))))))) has-no-fixed-points-succ-ℤ-Mod : (k : ℕ) (x : ℤ-Mod k) → is-not-one-ℕ k → succ-ℤ-Mod k x ≠ x has-no-fixed-points-succ-ℤ-Mod k x = map-neg (is-one-is-fixed-point-succ-ℤ-Mod k x) has-no-fixed-points-succ-Fin : {k : ℕ} (x : Fin k) → is-not-one-ℕ k → succ-Fin k x ≠ x has-no-fixed-points-succ-Fin {succ-ℕ k} x = has-no-fixed-points-succ-ℤ-Mod (succ-ℕ k) x
Divisibility is decidable
is-decidable-div-ℤ : (d x : ℤ) → is-decidable (div-ℤ d x) is-decidable-div-ℤ d x = is-decidable-iff ( div-div-int-abs-ℤ ∘ div-is-zero-mod-ℤ (abs-ℤ d) x) ( is-zero-mod-div-ℤ (abs-ℤ d) x ∘ div-int-abs-div-ℤ) ( has-decidable-equality-ℤ-Mod ( abs-ℤ d) ( mod-ℤ (abs-ℤ d) x) ( zero-ℤ-Mod (abs-ℤ d)))
mod-ℤ
is surjective
is-surjective-succ-Fin-comp-mod-succ-ℕ : (n : ℕ) → is-surjective (succ-Fin (succ-ℕ n) ∘ mod-succ-ℕ n) is-surjective-succ-Fin-comp-mod-succ-ℕ n = is-surjective-comp ( is-surjective-is-equiv (is-equiv-succ-Fin (succ-ℕ n))) ( is-surjective-mod-succ-ℕ n) is-surjective-mod-ℤ : (n : ℕ) → is-surjective (mod-ℤ n) is-surjective-mod-ℤ zero-ℕ = is-surjective-id is-surjective-mod-ℤ (succ-ℕ n) = is-surjective-left-factor ( inr ∘ inr) ( is-surjective-htpy ( λ x → refl) ( is-surjective-succ-Fin-comp-mod-succ-ℕ n))
Recent changes
- 2024-04-09. malarbol and Fredrik Bakke. The additive group of rational numbers (#1100).
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).
- 2024-01-28. Fredrik Bakke. Equivalence injective type families (#1009).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).