The axiom of choice

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2022-02-16.
Last modified on 2025-01-07.

module foundation.axiom-of-choice where
Imports
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.functoriality-propositional-truncation
open import foundation.inhabited-types
open import foundation.postcomposition-functions
open import foundation.projective-types
open import foundation.propositional-truncations
open import foundation.sections
open import foundation.split-surjective-maps
open import foundation.surjective-maps
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.identity-types
open import foundation-core.precomposition-functions
open import foundation-core.sets

Idea

The axiom of choice asserts that for every family of inhabited types B indexed by a set A, the type of sections of that family (x : A) → B x is inhabited.

Definition

Instances of choice

instance-choice : {l1 l2 : Level} (A : UU l1)  (A  UU l2)  UU (l1  l2)
instance-choice A B =
  ((x : A)  is-inhabited (B x))  is-inhabited ((x : A)  B x)

Note that the above statement, were it true for all indexing types A, is inconsistent with univalence. For a concrete counterexample see Lemma 3.8.5 in [UF13].

The axiom of choice restricted to sets

instance-choice-Set :
  {l1 l2 : Level} (A : Set l1)  (type-Set A  Set l2)  UU (l1  l2)
instance-choice-Set A B = instance-choice (type-Set A) (type-Set  B)

level-AC-Set : (l1 l2 : Level)  UU (lsuc l1  lsuc l2)
level-AC-Set l1 l2 =
  (A : Set l1) (B : type-Set A  Set l2)  instance-choice-Set A B

AC-Set : UUω
AC-Set = {l1 l2 : Level}  level-AC-Set l1 l2

The axiom of choice

instance-choice₀ :
  {l1 l2 : Level} (A : Set l1)  (type-Set A  UU l2)  UU (l1  l2)
instance-choice₀ A = instance-choice (type-Set A)

level-AC0 : (l1 l2 : Level)  UU (lsuc l1  lsuc l2)
level-AC0 l1 l2 =
  (A : Set l1) (B : type-Set A  UU l2)  instance-choice₀ A B

AC0 : UUω
AC0 = {l1 l2 : Level}  level-AC0 l1 l2

Properties

Every type is set-projective if and only if the axiom of choice holds

is-set-projective-AC0 :
  {l1 l2 l3 : Level}  level-AC0 l2 (l1  l2) 
  (X : UU l3)  is-set-projective l1 l2 X
is-set-projective-AC0 ac X A B f h =
  map-trunc-Prop
    ( ( map-Σ
        ( λ g  ((map-surjection f)  g)  h)
        ( precomp h A)
        ( λ s H  htpy-postcomp X H h)) 
      ( section-is-split-surjective (map-surjection f)))
    ( ac B (fiber (map-surjection f)) (is-surjective-map-surjection f))

AC0-is-set-projective :
  {l1 l2 : Level} 
  ({l : Level} (X : UU l)  is-set-projective (l1  l2) l1 X) 
  level-AC0 l1 l2
AC0-is-set-projective H A B K =
  map-trunc-Prop
    ( map-equiv (equiv-Π-section-pr1 {B = B})  tot  g  htpy-eq))
    ( H ( type-Set A)
        ( Σ (type-Set A) B)
        ( A)
        ( pr1 ,  a  map-trunc-Prop (map-inv-fiber-pr1 B a) (K a)))
        ( id))

See also

References

[UF13]
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.

Recent changes