Embeddings
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-07.
Last modified on 2023-11-24.
module foundation-core.embeddings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types
Idea
An embedding from one type into another is a map that induces
equivalences on
identity types. In other words, the
identitifications (f x) = (f y)
for an embedding f : A → B
are in
one-to-one correspondence with the identitifications x = y
. Embeddings are
better behaved homotopically than
injective maps, because the condition of
being an equivalence is a property under
function extensionality.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-emb : (A → B) → UU (l1 ⊔ l2) is-emb f = (x y : A) → is-equiv (ap f {x} {y}) equiv-ap-is-emb : {f : A → B} (e : is-emb f) {x y : A} → (x = y) ≃ (f x = f y) pr1 (equiv-ap-is-emb {f} e) = ap f pr2 (equiv-ap-is-emb {f} e {x} {y}) = e x y inv-equiv-ap-is-emb : {f : A → B} (e : is-emb f) {x y : A} → (f x = f y) ≃ (x = y) inv-equiv-ap-is-emb e = inv-equiv (equiv-ap-is-emb e) infix 5 _↪_ _↪_ : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) A ↪ B = Σ (A → B) is-emb module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where map-emb : A ↪ B → A → B map-emb = pr1 is-emb-map-emb : (f : A ↪ B) → is-emb (map-emb f) is-emb-map-emb = pr2 equiv-ap-emb : (e : A ↪ B) {x y : A} → (x = y) ≃ (map-emb e x = map-emb e y) equiv-ap-emb e = equiv-ap-is-emb (is-emb-map-emb e) inv-equiv-ap-emb : (e : A ↪ B) {x y : A} → (map-emb e x = map-emb e y) ≃ (x = y) inv-equiv-ap-emb e = inv-equiv (equiv-ap-emb e)
Examples
The identity map is an embedding
module _ {l : Level} {A : UU l} where is-emb-id : is-emb (id {A = A}) is-emb-id x y = is-equiv-htpy id ap-id is-equiv-id id-emb : A ↪ A pr1 id-emb = id pr2 id-emb = is-emb-id
To prove that a map is an embedding, a point in the domain may be assumed
module _ {l : Level} {A : UU l} {l2 : Level} {B : UU l2} {f : A → B} where abstract is-emb-is-emb : (A → is-emb f) → is-emb f is-emb-is-emb H x y = H x x y
Recent changes
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-10. Fredrik Bakke. Define precedence levels and associativities for all binary operators (#712).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).