Similarity of positive real numbers
Content created by Louis Wasserman.
Created on 2025-11-09.
Last modified on 2025-12-03.
module real-numbers.similarity-positive-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.large-equivalence-relations open import foundation.large-similarity-relations open import foundation.propositions open import foundation.universe-levels open import real-numbers.positive-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.similarity-real-numbers
Idea
Two positive real numbers are similar¶ if they are similar as real numbers.
Definition
sim-prop-ℝ⁺ : {l1 l2 : Level} → ℝ⁺ l1 → ℝ⁺ l2 → Prop (l1 ⊔ l2) sim-prop-ℝ⁺ (x , _) (y , _) = sim-prop-ℝ x y sim-ℝ⁺ : {l1 l2 : Level} → ℝ⁺ l1 → ℝ⁺ l2 → UU (l1 ⊔ l2) sim-ℝ⁺ (x , _) (y , _) = sim-ℝ x y
Properties
Similarity is a large equivalence relation
abstract refl-sim-ℝ⁺ : {l : Level} (x : ℝ⁺ l) → sim-ℝ⁺ x x refl-sim-ℝ⁺ (x , _) = refl-sim-ℝ x symmetric-sim-ℝ⁺ : {l1 l2 : Level} (x : ℝ⁺ l1) (y : ℝ⁺ l2) → sim-ℝ⁺ x y → sim-ℝ⁺ y x symmetric-sim-ℝ⁺ _ _ = symmetric-sim-ℝ transitive-sim-ℝ⁺ : {l1 l2 l3 : Level} (x : ℝ⁺ l1) (y : ℝ⁺ l2) (z : ℝ⁺ l3) → sim-ℝ⁺ y z → sim-ℝ⁺ x y → sim-ℝ⁺ x z transitive-sim-ℝ⁺ (x , _) (y , _) (z , _) = transitive-sim-ℝ x y z large-equivalence-relation-sim-ℝ⁺ : Large-Equivalence-Relation (_⊔_) ℝ⁺ large-equivalence-relation-sim-ℝ⁺ = make-Large-Equivalence-Relation ( sim-prop-ℝ⁺) ( refl-sim-ℝ⁺) ( symmetric-sim-ℝ⁺) ( transitive-sim-ℝ⁺)
Similarity is a large similarity relation
abstract eq-sim-ℝ⁺ : {l : Level} (x y : ℝ⁺ l) → sim-ℝ⁺ x y → x = y eq-sim-ℝ⁺ x y x~y = eq-ℝ⁺ x y (eq-sim-ℝ x~y) large-similarity-relation-sim-ℝ⁺ : Large-Similarity-Relation (_⊔_) ℝ⁺ large-similarity-relation-sim-ℝ⁺ = make-Large-Similarity-Relation ( large-equivalence-relation-sim-ℝ⁺) ( eq-sim-ℝ⁺)
Positive real numbers are similar to their raised universe level counterparts
abstract sim-raise-ℝ⁺ : {l0 : Level} (l : Level) (x : ℝ⁺ l) → sim-ℝ⁺ x (raise-ℝ⁺ l x) sim-raise-ℝ⁺ l (x , _) = sim-raise-ℝ l x
Recent changes
- 2025-12-03. Louis Wasserman. Integer powers of positive reals (#1741).
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).