Deloopable H-spaces
Content created by Egbert Rijke.
Created on 2024-03-23.
Last modified on 2024-03-23.
module higher-group-theory.deloopable-h-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import higher-group-theory.higher-groups open import structured-types.equivalences-h-spaces open import structured-types.h-spaces
Idea
Consider an H-space with underlying
pointed type (X , *)
and with
multiplication μ
satisfying
left-unit-law : (x : X) → μ * x = x
right-unit-law : (x : X) → μ x * = x
coh-unit-law : left-unit-law * = right-unit-law *.
A delooping¶ of
the H-space X
consists of an ∞-group
G
and an equivalence of H-spaces
X ≃ h-space-∞-Group G.
Definitions
Deloopings of H-spaces of a given universe level
module _ {l1 : Level} (l2 : Level) (A : H-Space l1) where delooping-H-Space-Level : UU (l1 ⊔ lsuc l2) delooping-H-Space-Level = Σ (∞-Group l2) (λ G → equiv-H-Space A (h-space-∞-Group G))
Deloopings of H-spaces
module _ {l1 : Level} (A : H-Space l1) where delooping-H-Space : UU (lsuc l1) delooping-H-Space = delooping-H-Space-Level l1 A
See also
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).