Dependent products of algebras over commutative rings
Content created by Louis Wasserman.
Created on 2026-02-14.
Last modified on 2026-02-14.
module commutative-algebra.dependent-products-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.universe-levels open import linear-algebra.bilinear-maps-left-modules-commutative-rings open import linear-algebra.dependent-products-left-modules-commutative-rings open import linear-algebra.left-modules-commutative-rings open import linear-algebra.linear-maps-left-modules-commutative-rings
Idea
Given a commutative ring R and a
family of algebras Aᵢ
over R indexed by i : I, the dependent product Π (i : I) Aᵢ is an algebra
over R.
Definition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (I : UU l2) (A : I → algebra-Commutative-Ring l3 R) where left-module-Π-algebra-Commutative-Ring : left-module-Commutative-Ring (l2 ⊔ l3) R left-module-Π-algebra-Commutative-Ring = Π-left-module-Commutative-Ring R ( I) ( λ i → left-module-algebra-Commutative-Ring R (A i)) type-Π-algebra-Commutative-Ring : UU (l2 ⊔ l3) type-Π-algebra-Commutative-Ring = (i : I) → type-algebra-Commutative-Ring R (A i) mul-Π-algebra-Commutative-Ring : type-Π-algebra-Commutative-Ring → type-Π-algebra-Commutative-Ring → type-Π-algebra-Commutative-Ring mul-Π-algebra-Commutative-Ring f g i = mul-algebra-Commutative-Ring R (A i) (f i) (g i) abstract is-additive-left-mul-Π-algebra-Commutative-Ring : (f : type-Π-algebra-Commutative-Ring) → is-additive-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( mul-Π-algebra-Commutative-Ring f) is-additive-left-mul-Π-algebra-Commutative-Ring f g h = eq-htpy ( λ i → is-additive-map-ev-left-bilinear-map-left-module-Commutative-Ring R ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( bilinear-mul-algebra-Commutative-Ring R (A i)) ( f i) ( g i) ( h i)) is-homogeneous-left-mul-Π-algebra-Commutative-Ring : (f : type-Π-algebra-Commutative-Ring) → is-homogeneous-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( mul-Π-algebra-Commutative-Ring f) is-homogeneous-left-mul-Π-algebra-Commutative-Ring f c g = eq-htpy ( λ i → is-homogeneous-map-ev-left-bilinear-map-left-module-Commutative-Ring R ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( bilinear-mul-algebra-Commutative-Ring R (A i)) ( f i) ( c) ( g i)) is-linear-left-mul-Π-algebra-Commutative-Ring : (f : type-Π-algebra-Commutative-Ring) → is-linear-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( mul-Π-algebra-Commutative-Ring f) is-linear-left-mul-Π-algebra-Commutative-Ring f = ( is-additive-left-mul-Π-algebra-Commutative-Ring f , is-homogeneous-left-mul-Π-algebra-Commutative-Ring f) abstract is-additive-right-mul-Π-algebra-Commutative-Ring : (g : type-Π-algebra-Commutative-Ring) → is-additive-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( λ f → mul-Π-algebra-Commutative-Ring f g) is-additive-right-mul-Π-algebra-Commutative-Ring f g h = eq-htpy ( λ i → is-additive-map-ev-right-bilinear-map-left-module-Commutative-Ring R ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( bilinear-mul-algebra-Commutative-Ring R (A i)) ( f i) ( g i) ( h i)) is-homogeneous-right-mul-Π-algebra-Commutative-Ring : (g : type-Π-algebra-Commutative-Ring) → is-homogeneous-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( λ f → mul-Π-algebra-Commutative-Ring f g) is-homogeneous-right-mul-Π-algebra-Commutative-Ring f c g = eq-htpy ( λ i → is-homogeneous-map-ev-right-bilinear-map-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( left-module-algebra-Commutative-Ring R (A i)) ( bilinear-mul-algebra-Commutative-Ring R (A i)) ( f i) ( c) ( g i)) is-linear-right-mul-Π-algebra-Commutative-Ring : (g : type-Π-algebra-Commutative-Ring) → is-linear-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( λ f → mul-Π-algebra-Commutative-Ring f g) is-linear-right-mul-Π-algebra-Commutative-Ring g = ( is-additive-right-mul-Π-algebra-Commutative-Ring g , is-homogeneous-right-mul-Π-algebra-Commutative-Ring g) bilinear-mul-Π-algebra-Commutative-Ring : bilinear-map-left-module-Commutative-Ring ( R) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) ( left-module-Π-algebra-Commutative-Ring) bilinear-mul-Π-algebra-Commutative-Ring = ( mul-Π-algebra-Commutative-Ring , is-linear-right-mul-Π-algebra-Commutative-Ring , is-linear-left-mul-Π-algebra-Commutative-Ring) Π-algebra-Commutative-Ring : algebra-Commutative-Ring (l2 ⊔ l3) R Π-algebra-Commutative-Ring = ( left-module-Π-algebra-Commutative-Ring , bilinear-mul-Π-algebra-Commutative-Ring)
See also
Recent changes
- 2026-02-14. Louis Wasserman. Dependent products of algebras over commutative rings (#1841).