Dependent products of algebras over commutative rings

Content created by Louis Wasserman.

Created on 2026-02-14.
Last modified on 2026-02-14.

module commutative-algebra.dependent-products-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings
open import commutative-algebra.commutative-rings

open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.universe-levels

open import linear-algebra.bilinear-maps-left-modules-commutative-rings
open import linear-algebra.dependent-products-left-modules-commutative-rings
open import linear-algebra.left-modules-commutative-rings
open import linear-algebra.linear-maps-left-modules-commutative-rings

Idea

Given a commutative ring R and a family of algebras Aᵢ over R indexed by i : I, the dependent product Π (i : I) Aᵢ is an algebra over R.

Definition

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (I : UU l2)
  (A : I  algebra-Commutative-Ring l3 R)
  where

  left-module-Π-algebra-Commutative-Ring :
    left-module-Commutative-Ring (l2  l3) R
  left-module-Π-algebra-Commutative-Ring =
    Π-left-module-Commutative-Ring R
      ( I)
      ( λ i  left-module-algebra-Commutative-Ring R (A i))

  type-Π-algebra-Commutative-Ring : UU (l2  l3)
  type-Π-algebra-Commutative-Ring =
    (i : I)  type-algebra-Commutative-Ring R (A i)

  mul-Π-algebra-Commutative-Ring :
    type-Π-algebra-Commutative-Ring 
    type-Π-algebra-Commutative-Ring 
    type-Π-algebra-Commutative-Ring
  mul-Π-algebra-Commutative-Ring f g i =
    mul-algebra-Commutative-Ring R (A i) (f i) (g i)

  abstract
    is-additive-left-mul-Π-algebra-Commutative-Ring :
      (f : type-Π-algebra-Commutative-Ring) 
      is-additive-map-left-module-Commutative-Ring
        ( R)
        ( left-module-Π-algebra-Commutative-Ring)
        ( left-module-Π-algebra-Commutative-Ring)
        ( mul-Π-algebra-Commutative-Ring f)
    is-additive-left-mul-Π-algebra-Commutative-Ring f g h =
      eq-htpy
        ( λ i 
          is-additive-map-ev-left-bilinear-map-left-module-Commutative-Ring R
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( bilinear-mul-algebra-Commutative-Ring R (A i))
            ( f i)
            ( g i)
            ( h i))

    is-homogeneous-left-mul-Π-algebra-Commutative-Ring :
      (f : type-Π-algebra-Commutative-Ring) 
      is-homogeneous-map-left-module-Commutative-Ring
        ( R)
        ( left-module-Π-algebra-Commutative-Ring)
        ( left-module-Π-algebra-Commutative-Ring)
        ( mul-Π-algebra-Commutative-Ring f)
    is-homogeneous-left-mul-Π-algebra-Commutative-Ring f c g =
      eq-htpy
        ( λ i 
          is-homogeneous-map-ev-left-bilinear-map-left-module-Commutative-Ring R
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( bilinear-mul-algebra-Commutative-Ring R (A i))
            ( f i)
            ( c)
            ( g i))

  is-linear-left-mul-Π-algebra-Commutative-Ring :
    (f : type-Π-algebra-Commutative-Ring) 
    is-linear-map-left-module-Commutative-Ring
      ( R)
      ( left-module-Π-algebra-Commutative-Ring)
      ( left-module-Π-algebra-Commutative-Ring)
      ( mul-Π-algebra-Commutative-Ring f)
  is-linear-left-mul-Π-algebra-Commutative-Ring f =
    ( is-additive-left-mul-Π-algebra-Commutative-Ring f ,
      is-homogeneous-left-mul-Π-algebra-Commutative-Ring f)

  abstract
    is-additive-right-mul-Π-algebra-Commutative-Ring :
      (g : type-Π-algebra-Commutative-Ring) 
      is-additive-map-left-module-Commutative-Ring
        ( R)
        ( left-module-Π-algebra-Commutative-Ring)
        ( left-module-Π-algebra-Commutative-Ring)
        ( λ f  mul-Π-algebra-Commutative-Ring f g)
    is-additive-right-mul-Π-algebra-Commutative-Ring f g h =
      eq-htpy
        ( λ i 
          is-additive-map-ev-right-bilinear-map-left-module-Commutative-Ring R
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( bilinear-mul-algebra-Commutative-Ring R (A i))
            ( f i)
            ( g i)
            ( h i))

    is-homogeneous-right-mul-Π-algebra-Commutative-Ring :
      (g : type-Π-algebra-Commutative-Ring) 
      is-homogeneous-map-left-module-Commutative-Ring
        ( R)
        ( left-module-Π-algebra-Commutative-Ring)
        ( left-module-Π-algebra-Commutative-Ring)
        ( λ f  mul-Π-algebra-Commutative-Ring f g)
    is-homogeneous-right-mul-Π-algebra-Commutative-Ring f c g =
      eq-htpy
        ( λ i 
          is-homogeneous-map-ev-right-bilinear-map-left-module-Commutative-Ring
            ( R)
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( left-module-algebra-Commutative-Ring R (A i))
            ( bilinear-mul-algebra-Commutative-Ring R (A i))
            ( f i)
            ( c)
            ( g i))

  is-linear-right-mul-Π-algebra-Commutative-Ring :
    (g : type-Π-algebra-Commutative-Ring) 
    is-linear-map-left-module-Commutative-Ring
      ( R)
      ( left-module-Π-algebra-Commutative-Ring)
      ( left-module-Π-algebra-Commutative-Ring)
      ( λ f  mul-Π-algebra-Commutative-Ring f g)
  is-linear-right-mul-Π-algebra-Commutative-Ring g =
    ( is-additive-right-mul-Π-algebra-Commutative-Ring g ,
      is-homogeneous-right-mul-Π-algebra-Commutative-Ring g)

  bilinear-mul-Π-algebra-Commutative-Ring :
    bilinear-map-left-module-Commutative-Ring
      ( R)
      ( left-module-Π-algebra-Commutative-Ring)
      ( left-module-Π-algebra-Commutative-Ring)
      ( left-module-Π-algebra-Commutative-Ring)
  bilinear-mul-Π-algebra-Commutative-Ring =
    ( mul-Π-algebra-Commutative-Ring ,
      is-linear-right-mul-Π-algebra-Commutative-Ring ,
      is-linear-left-mul-Π-algebra-Commutative-Ring)

  Π-algebra-Commutative-Ring : algebra-Commutative-Ring (l2  l3) R
  Π-algebra-Commutative-Ring =
    ( left-module-Π-algebra-Commutative-Ring ,
      bilinear-mul-Π-algebra-Commutative-Ring)

See also

Recent changes