The ring of rational numbers
Content created by malarbol, Fredrik Bakke and Garrett Figueroa.
Created on 2024-04-11.
Last modified on 2025-08-11.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.ring-of-rational-numbers where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import elementary-number-theory.positive-integers open import elementary-number-theory.rational-numbers open import elementary-number-theory.ring-of-integers open import elementary-number-theory.unit-fractions-rational-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.semigroups open import ring-theory.homomorphisms-rings open import ring-theory.localizations-rings open import ring-theory.rings
Idea
The additive group of rational numbers equipped with multiplication is a commutative division ring.
Definitions
The compatible multiplicative structure on the abelian group of rational numbers
has-mul-abelian-group-add-ℚ : has-mul-Ab abelian-group-add-ℚ pr1 has-mul-abelian-group-add-ℚ = has-associative-mul-Semigroup semigroup-mul-ℚ pr1 (pr2 has-mul-abelian-group-add-ℚ) = is-unital-mul-ℚ pr1 (pr2 (pr2 has-mul-abelian-group-add-ℚ)) = left-distributive-mul-add-ℚ pr2 (pr2 (pr2 has-mul-abelian-group-add-ℚ)) = right-distributive-mul-add-ℚ
The ring of rational numbers
ring-ℚ : Ring lzero pr1 ring-ℚ = abelian-group-add-ℚ pr2 ring-ℚ = has-mul-abelian-group-add-ℚ
Properties
The ring of rational numbers is commutative
commutative-ring-ℚ : Commutative-Ring lzero pr1 commutative-ring-ℚ = ring-ℚ pr2 commutative-ring-ℚ = commutative-mul-ℚ
The inclusion of integers in the rationals is the initial ring homomorphism
hom-ring-rational-ℤ : hom-Ring ℤ-Ring ring-ℚ hom-ring-rational-ℤ = ( hom-add-rational-ℤ) , ( λ {x y} → inv (mul-rational-ℤ x y)) , ( refl) abstract htpy-map-initial-hom-ring-rational-ℤ : map-initial-hom-Ring ring-ℚ ~ rational-ℤ htpy-map-initial-hom-ring-rational-ℤ = htpy-initial-hom-Ring ring-ℚ hom-ring-rational-ℤ eq-initial-hom-ring-rational-ℤ : initial-hom-Ring ring-ℚ = hom-ring-rational-ℤ eq-initial-hom-ring-rational-ℤ = contraction-initial-hom-Ring ring-ℚ hom-ring-rational-ℤ
The positive integers are invertible in ℚ
abstract inverts-positive-integers-rational-ℤ : inverts-subset-hom-Ring ( ℤ-Ring) ( ring-ℚ) ( subtype-positive-ℤ) ( hom-ring-rational-ℤ) inverts-positive-integers-rational-ℤ k k>0 = ( reciprocal-rational-ℤ⁺ (k , k>0)) , ( right-inverse-law-reciprocal-rational-ℤ⁺ (k , k>0) , left-inverse-law-reciprocal-rational-ℤ⁺ (k , k>0))
Any ring homomorphism from ℚ inverts the positive integers
module _ {l : Level} (R : Ring l) (f : hom-Ring ring-ℚ R) where abstract inverts-positive-integers-rational-hom-Ring : inverts-subset-hom-Ring ( ℤ-Ring) ( R) ( subtype-positive-ℤ) ( comp-hom-Ring ℤ-Ring ring-ℚ R f hom-ring-rational-ℤ) inverts-positive-integers-rational-hom-Ring k k>0 = preserves-invertible-elements-hom-Ring ( ring-ℚ) ( R) ( f) ( inverts-positive-integers-rational-ℤ k k>0)
See also
ring-extension-rational-numbers-of-rational-numbers
: the trivial ring extension ofℚ
where it is proven thatℚ
is the localization ofℤ
atℤ⁺
.
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452). - 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).
- 2024-04-11. malarbol. The commutative ring of rational numbers (#1107).