The principle of omniscience
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-04-09.
Last modified on 2025-01-07.
module foundation.principle-of-omniscience where
Imports
open import foundation.decidable-subtypes open import foundation.propositional-truncations open import foundation.universe-levels open import foundation-core.decidable-propositions open import foundation-core.propositions
Idea
A type X
is said to satisfy the
principle of omniscience¶
if every decidable subtype of X
is either
inhabited or
empty.
Definition
is-omniscient-Prop : {l : Level} → UU l → Prop (lsuc lzero ⊔ l) is-omniscient-Prop X = Π-Prop ( decidable-subtype lzero X) ( λ P → is-decidable-Prop (trunc-Prop (type-decidable-subtype P))) is-omniscient : {l : Level} → UU l → UU (lsuc lzero ⊔ l) is-omniscient X = type-Prop (is-omniscient-Prop X)
See also
- The limited principle of omniscience
- The lesser limited principle of omniscience
- The weak limited principle of omniscience
- Markov’s principle
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).