Powersets
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Maša Žaucer and Gregor Perčič.
Created on 2022-04-21.
Last modified on 2024-09-23.
module foundation.powersets where
Imports
open import foundation.subtypes open import foundation.universe-levels open import foundation-core.sets open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.posets open import order-theory.preorders
Idea
The powerset¶ of a type is the set of all subtypes with respect to a given universe level.
Definition
powerset : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) powerset = subtype
Properties
The powerset is a set
module _ {l1 : Level} (A : UU l1) where is-set-powerset : {l2 : Level} → is-set (powerset l2 A) is-set-powerset = is-set-subtype powerset-Set : (l2 : Level) → Set (l1 ⊔ lsuc l2) powerset-Set l2 = subtype-Set l2 A
The powerset large preorder
module _ {l1 : Level} (A : UU l1) where powerset-Large-Preorder : Large-Preorder (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) type-Large-Preorder powerset-Large-Preorder l = subtype l A leq-prop-Large-Preorder powerset-Large-Preorder = leq-prop-subtype refl-leq-Large-Preorder powerset-Large-Preorder = refl-leq-subtype transitive-leq-Large-Preorder powerset-Large-Preorder = transitive-leq-subtype
The powerset large poset
module _ {l1 : Level} (A : UU l1) where powerset-Large-Poset : Large-Poset (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) large-preorder-Large-Poset powerset-Large-Poset = powerset-Large-Preorder A antisymmetric-leq-Large-Poset powerset-Large-Poset P Q = antisymmetric-leq-subtype P Q
The powerset preorder at a universe level
module _ {l1 : Level} (A : UU l1) where powerset-Preorder : (l2 : Level) → Preorder (l1 ⊔ lsuc l2) (l1 ⊔ l2) powerset-Preorder = preorder-Large-Preorder (powerset-Large-Preorder A)
The powerset poset at a universe level
module _ {l1 : Level} (A : UU l1) where powerset-Poset : (l2 : Level) → Poset (l1 ⊔ lsuc l2) (l1 ⊔ l2) powerset-Poset = poset-Large-Poset (powerset-Large-Poset A)
External links
- Power set at Mathswitch
- power object at Lab
- power set at Lab
- Power set at Wikipedia
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).