Essentially surjective functors between precategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-01.
Last modified on 2024-04-11.
module category-theory.essentially-surjective-functors-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.propositions open import foundation.universe-levels
Idea
A functor F : C → D
between
precategories is essentially surjective
if there for every object y : D
merely exists an object x : C
such
that F x ≅ y
.
Definitions
The predicate of being essentially surjective
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where is-essentially-surjective-prop-functor-Precategory : Prop (l1 ⊔ l3 ⊔ l4) is-essentially-surjective-prop-functor-Precategory = Π-Prop ( obj-Precategory D) ( λ y → exists-structure-Prop ( obj-Precategory C) ( λ x → iso-Precategory D (obj-functor-Precategory C D F x) y)) is-essentially-surjective-functor-Precategory : UU (l1 ⊔ l3 ⊔ l4) is-essentially-surjective-functor-Precategory = ( y : obj-Precategory D) → exists-structure ( obj-Precategory C) ( λ x → iso-Precategory D (obj-functor-Precategory C D F x) y) is-prop-is-essentially-surjective-functor-Precategory : is-prop is-essentially-surjective-functor-Precategory is-prop-is-essentially-surjective-functor-Precategory = is-prop-type-Prop is-essentially-surjective-prop-functor-Precategory
The type of essentially surjective functors
essentially-surjective-functor-Precategory : {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) essentially-surjective-functor-Precategory C D = Σ ( functor-Precategory C D) ( is-essentially-surjective-functor-Precategory C D) module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : essentially-surjective-functor-Precategory C D) where functor-essentially-surjective-functor-Precategory : functor-Precategory C D functor-essentially-surjective-functor-Precategory = pr1 F is-essentially-surjective-essentially-surjective-functor-Precategory : is-essentially-surjective-functor-Precategory C D ( functor-essentially-surjective-functor-Precategory) is-essentially-surjective-essentially-surjective-functor-Precategory = pr2 F obj-essentially-surjective-functor-Precategory : obj-Precategory C → obj-Precategory D obj-essentially-surjective-functor-Precategory = obj-functor-Precategory C D ( functor-essentially-surjective-functor-Precategory) hom-essentially-surjective-functor-Precategory : {x y : obj-Precategory C} → hom-Precategory C x y → hom-Precategory D ( obj-essentially-surjective-functor-Precategory x) ( obj-essentially-surjective-functor-Precategory y) hom-essentially-surjective-functor-Precategory = hom-functor-Precategory C D ( functor-essentially-surjective-functor-Precategory)
Properties
Precomposing by essentially surjective functors define fully faithful functors
This remains to be shown. This is Lemma 8.2 of Univalent Categories and the Rezk completion.
See also
References
- [AKS15]
- Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 06 2015. arXiv:1303.0584, doi:10.1017/S0960129514000486.
External links
- Essential Fibres at 1lab
- essentially surjective functor at Lab
- Fully Faithful and Essentially Surjective Functors at Kerodon
- Essentially surjective functor at Wikipedia
- essentially surjective functor at wikidata
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).