Essentially surjective functors between precategories

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-11-01.
Last modified on 2024-04-11.

module category-theory.essentially-surjective-functors-precategories where
Imports
open import category-theory.functors-precategories
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.propositions
open import foundation.universe-levels

Idea

A functor F : C → D between precategories is essentially surjective if there for every object y : D merely exists an object x : C such that F x ≅ y.

Definitions

The predicate of being essentially surjective

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  (F : functor-Precategory C D)
  where

  is-essentially-surjective-prop-functor-Precategory : Prop (l1  l3  l4)
  is-essentially-surjective-prop-functor-Precategory =
    Π-Prop
      ( obj-Precategory D)
      ( λ y 
        exists-structure-Prop
          ( obj-Precategory C)
          ( λ x  iso-Precategory D (obj-functor-Precategory C D F x) y))

  is-essentially-surjective-functor-Precategory : UU (l1  l3  l4)
  is-essentially-surjective-functor-Precategory =
    ( y : obj-Precategory D) 
    exists-structure
      ( obj-Precategory C)
      ( λ x  iso-Precategory D (obj-functor-Precategory C D F x) y)

  is-prop-is-essentially-surjective-functor-Precategory :
    is-prop is-essentially-surjective-functor-Precategory
  is-prop-is-essentially-surjective-functor-Precategory =
    is-prop-type-Prop is-essentially-surjective-prop-functor-Precategory

The type of essentially surjective functors

essentially-surjective-functor-Precategory :
  {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) 
  UU (l1  l2  l3  l4)
essentially-surjective-functor-Precategory C D =
  Σ ( functor-Precategory C D)
    ( is-essentially-surjective-functor-Precategory C D)

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  (F : essentially-surjective-functor-Precategory C D)
  where

  functor-essentially-surjective-functor-Precategory :
    functor-Precategory C D
  functor-essentially-surjective-functor-Precategory = pr1 F

  is-essentially-surjective-essentially-surjective-functor-Precategory :
    is-essentially-surjective-functor-Precategory C D
      ( functor-essentially-surjective-functor-Precategory)
  is-essentially-surjective-essentially-surjective-functor-Precategory = pr2 F

  obj-essentially-surjective-functor-Precategory :
    obj-Precategory C  obj-Precategory D
  obj-essentially-surjective-functor-Precategory =
    obj-functor-Precategory C D
      ( functor-essentially-surjective-functor-Precategory)

  hom-essentially-surjective-functor-Precategory :
    {x y : obj-Precategory C} 
    hom-Precategory C x y 
    hom-Precategory D
      ( obj-essentially-surjective-functor-Precategory x)
      ( obj-essentially-surjective-functor-Precategory y)
  hom-essentially-surjective-functor-Precategory =
    hom-functor-Precategory C D
      ( functor-essentially-surjective-functor-Precategory)

Properties

Precomposing by essentially surjective functors define fully faithful functors

This remains to be shown. This is Lemma 8.2 of Univalent Categories and the Rezk completion.

See also

References

[AKS15]
Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 06 2015. arXiv:1303.0584, doi:10.1017/S0960129514000486.

Recent changes