The poset of closed intervals in posets
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module order-theory.poset-closed-intervals-posets where
Imports
open import foundation.binary-relations open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.closed-intervals-posets open import order-theory.posets open import order-theory.preorders
Idea
In a poset P
, the type of
closed intervals in P
itself forms
a poset, with inequality defined by containment of the corresponding subtypes.
Equivalently, [a,b] ≤ [c,d]
if c ≤ a
and b ≤ d
.
Definition
module _ {l1 l2 : Level} (P : Poset l1 l2) where leq-prop-closed-interval-Poset : Relation-Prop l2 (closed-interval-Poset P) leq-prop-closed-interval-Poset ((a , b) , a≤b) ((c , d) , c≤d) = leq-prop-Poset P c a ∧ leq-prop-Poset P b d leq-closed-interval-Poset : Relation l2 (closed-interval-Poset P) leq-closed-interval-Poset = type-Relation-Prop leq-prop-closed-interval-Poset
Properties
Containment is a preorder
module _ {l1 l2 : Level} (P : Poset l1 l2) where abstract refl-leq-closed-interval-Poset : is-reflexive (leq-closed-interval-Poset P) refl-leq-closed-interval-Poset ((a , b) , _) = ( refl-leq-Poset P a , refl-leq-Poset P b) transitive-leq-closed-interval-Poset : is-transitive (leq-closed-interval-Poset P) transitive-leq-closed-interval-Poset ((a , b) , _) ((c , d) , _) ((e , f) , _) (e≤c , d≤f) (c≤a , b≤d) = ( transitive-leq-Poset P e c a c≤a e≤c , transitive-leq-Poset P b d f d≤f b≤d) is-preorder-leq-closed-interval-Poset : is-preorder-Relation-Prop (leq-prop-closed-interval-Poset P) is-preorder-leq-closed-interval-Poset = ( refl-leq-closed-interval-Poset , transitive-leq-closed-interval-Poset) preorder-closed-interval-Poset : Preorder (l1 ⊔ l2) l2 preorder-closed-interval-Poset = ( closed-interval-Poset P , leq-prop-closed-interval-Poset P , is-preorder-leq-closed-interval-Poset)
Containment is a partial order
module _ {l1 l2 : Level} (P : Poset l1 l2) where abstract antisymmetric-leq-closed-interval-Poset : is-antisymmetric (leq-closed-interval-Poset P) antisymmetric-leq-closed-interval-Poset ((a , b) , a≤b) ((c , d) , c≤d) (c≤a , b≤d) (a≤c , d≤b) = eq-closed-interval-Poset P _ _ ( antisymmetric-leq-Poset P a c a≤c c≤a) ( antisymmetric-leq-Poset P b d b≤d d≤b) poset-closed-interval-Poset : Poset (l1 ⊔ l2) l2 poset-closed-interval-Poset = ( preorder-closed-interval-Poset P , antisymmetric-leq-closed-interval-Poset)
Containment of closed intervals is equivalent to containment of subtypes
module _ {l1 l2 : Level} (P : Poset l1 l2) where abstract leq-subtype-leq-closed-interval-Poset : ([a,b] [c,d] : closed-interval-Poset P) → leq-closed-interval-Poset P [a,b] [c,d] → ( subtype-closed-interval-Poset P [a,b] ⊆ subtype-closed-interval-Poset P [c,d]) leq-subtype-leq-closed-interval-Poset ((a , b) , a≤b) ((c , d) , c≤d) (c≤a , b≤d) x (a≤x , x≤b) = ( transitive-leq-Poset P c a x a≤x c≤a , transitive-leq-Poset P x b d b≤d x≤b) leq-closed-interval-leq-subtype-Poset : ([a,b] [c,d] : closed-interval-Poset P) → ( subtype-closed-interval-Poset P [a,b] ⊆ subtype-closed-interval-Poset P [c,d]) → leq-closed-interval-Poset P [a,b] [c,d] leq-closed-interval-leq-subtype-Poset [a,b]@((a , b) , a≤b) [c,d]@((c , d) , c≤d) H = ( pr1 (H a (lower-bound-is-in-closed-interval-Poset P [a,b])) , pr2 (H b (upper-bound-is-in-closed-interval-Poset P [a,b]))) leq-subtype-iff-leq-closed-interval-Poset : ([a,b] [c,d] : closed-interval-Poset P) → ( leq-closed-interval-Poset P [a,b] [c,d] ↔ ( subtype-closed-interval-Poset P [a,b] ⊆ subtype-closed-interval-Poset P [c,d])) leq-subtype-iff-leq-closed-interval-Poset [a,b] [c,d] = ( leq-subtype-leq-closed-interval-Poset [a,b] [c,d] , leq-closed-interval-leq-subtype-Poset [a,b] [c,d])
Recent changes
- 2025-10-04. Louis Wasserman. Poset of closed intervals (#1563).