Finite coverings in locales

Content created by Fredrik Bakke, fernabnor and louismntnu.

Created on 2023-06-24.
Last modified on 2023-06-24.

module order-theory.finite-coverings-locales where
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import order-theory.coverings-locales
open import order-theory.locales

open import univalent-combinatorics.finite-types


A finite covering of an object u in a locale is a finite family of objects whose join is u.


module _
  {l1 l2 : Level} (L : Locale l1 l2) (u : type-Locale L)

  is-finite-covering-Locale : (v : covering-Locale L u)  UU l2
  is-finite-covering-Locale v = is-finite (indexing-type-covering-Locale L v)

  finite-covering-Locale : UU (l1  lsuc l2)
  finite-covering-Locale =
    Σ ( 𝔽 l2)
      ( λ I 
        Σ ( type-𝔽 I  type-Locale L)
          ( is-covering-Locale L u))

module _
  {l1 l2 : Level} (L : Locale l1 l2)
  {u : type-Locale L} (v : finite-covering-Locale L u)

  indexing-type-finite-covering-Locale : UU l2
  indexing-type-finite-covering-Locale = type-𝔽 (pr1 v)

  covering-family-finite-covering-Locale :
    indexing-type-finite-covering-Locale  type-Locale L
  covering-family-finite-covering-Locale = pr1 (pr2 v)

  is-covering-finite-covering-Locale :
    is-covering-Locale L u covering-family-finite-covering-Locale
  is-covering-finite-covering-Locale = pr2 (pr2 v)

  covering-finite-covering-Locale : covering-Locale L u
  pr1 covering-finite-covering-Locale = indexing-type-finite-covering-Locale
  pr1 (pr2 covering-finite-covering-Locale) =
  pr2 (pr2 covering-finite-covering-Locale) = is-covering-finite-covering-Locale

  is-finite-covering-covering-Locale :
    is-finite-covering-Locale L u covering-finite-covering-Locale
  is-finite-covering-covering-Locale = is-finite-type-𝔽 (pr1 v)

Recent changes