Finite coverings in locales
Content created by Fredrik Bakke, fernabnor and louismntnu.
Created on 2023-06-24.
Last modified on 2023-06-24.
module order-theory.finite-coverings-locales where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import order-theory.coverings-locales open import order-theory.locales open import univalent-combinatorics.finite-types
Idea
A finite covering of an object u
in a locale is
a finite family of objects whose join
is u
.
Definition
module _ {l1 l2 : Level} (L : Locale l1 l2) (u : type-Locale L) where is-finite-covering-Locale : (v : covering-Locale L u) → UU l2 is-finite-covering-Locale v = is-finite (indexing-type-covering-Locale L v) finite-covering-Locale : UU (l1 ⊔ lsuc l2) finite-covering-Locale = Σ ( 𝔽 l2) ( λ I → Σ ( type-𝔽 I → type-Locale L) ( is-covering-Locale L u)) module _ {l1 l2 : Level} (L : Locale l1 l2) {u : type-Locale L} (v : finite-covering-Locale L u) where indexing-type-finite-covering-Locale : UU l2 indexing-type-finite-covering-Locale = type-𝔽 (pr1 v) covering-family-finite-covering-Locale : indexing-type-finite-covering-Locale → type-Locale L covering-family-finite-covering-Locale = pr1 (pr2 v) is-covering-finite-covering-Locale : is-covering-Locale L u covering-family-finite-covering-Locale is-covering-finite-covering-Locale = pr2 (pr2 v) covering-finite-covering-Locale : covering-Locale L u pr1 covering-finite-covering-Locale = indexing-type-finite-covering-Locale pr1 (pr2 covering-finite-covering-Locale) = covering-family-finite-covering-Locale pr2 (pr2 covering-finite-covering-Locale) = is-covering-finite-covering-Locale is-finite-covering-covering-Locale : is-finite-covering-Locale L u covering-finite-covering-Locale is-finite-covering-covering-Locale = is-finite-type-𝔽 (pr1 v)
Recent changes
- 2023-06-24. louismntnu, Fredrik Bakke and fernabnor. Finite coverings in locales (#669).