Large symmetric globular types

Content created by Egbert Rijke.

Created on 2024-11-17.
Last modified on 2024-12-03.

{-# OPTIONS --guardedness #-}

module globular-types.large-symmetric-globular-types where
Imports
open import foundation.large-binary-relations
open import foundation.universe-levels

open import globular-types.globular-types
open import globular-types.large-globular-types
open import globular-types.symmetric-globular-types

Idea

We say that a large globular type is symmetric if there is a symmetry action on its -cells for positive , mapping -cells from x to y to -cells from y to x.

Definitions

Symmetry structure on a large globular type

record
  is-symmetric-Large-Globular-Type
    {α : Level  Level} {β : Level  Level  Level}
    (G : Large-Globular-Type α β) :
    UUω
  where

  field
    inv-1-cell-is-symmetric-Large-Globular-Type :
      is-symmetric-Large-Relation
        ( 0-cell-Large-Globular-Type G)
        ( 1-cell-Large-Globular-Type G)

  field
    is-symmetric-1-cell-globular-type-is-symmetric-Large-Globular-Type :
      {l1 l2 : Level}
      (x : 0-cell-Large-Globular-Type G l1) 
      (y : 0-cell-Large-Globular-Type G l2) 
      is-symmetric-Globular-Type
        ( 1-cell-globular-type-Large-Globular-Type G x y)

open is-symmetric-Large-Globular-Type public

Large symmetric globular types

record
  Large-Symmetric-Globular-Type
    (α : Level  Level) (β : Level  Level  Level) :
    UUω
  where

  field
    large-globular-type-Large-Symmetric-Globular-Type :
      Large-Globular-Type α β

  0-cell-Large-Symmetric-Globular-Type :
    (l1 : Level)  UU (α l1)
  0-cell-Large-Symmetric-Globular-Type =
    0-cell-Large-Globular-Type large-globular-type-Large-Symmetric-Globular-Type

  1-cell-globular-type-Large-Symmetric-Globular-Type :
    {l1 l2 : Level}
    (x : 0-cell-Large-Symmetric-Globular-Type l1)
    (y : 0-cell-Large-Symmetric-Globular-Type l2) 
    Globular-Type (β l1 l2) (β l1 l2)
  1-cell-globular-type-Large-Symmetric-Globular-Type =
    1-cell-globular-type-Large-Globular-Type
      large-globular-type-Large-Symmetric-Globular-Type

  1-cell-Large-Symmetric-Globular-Type :
    {l1 l2 : Level}
    (x : 0-cell-Large-Symmetric-Globular-Type l1)
    (y : 0-cell-Large-Symmetric-Globular-Type l2) 
    UU (β l1 l2)
  1-cell-Large-Symmetric-Globular-Type =
    1-cell-Large-Globular-Type large-globular-type-Large-Symmetric-Globular-Type

  field
    is-symmetric-Large-Symmetric-Globular-Type :
      is-symmetric-Large-Globular-Type
        large-globular-type-Large-Symmetric-Globular-Type

  inv-1-cell-Large-Symmetric-Globular-Type :
    {l1 l2 : Level}
    {x : 0-cell-Large-Symmetric-Globular-Type l1}
    {y : 0-cell-Large-Symmetric-Globular-Type l2} 
    1-cell-Large-Symmetric-Globular-Type x y 
    1-cell-Large-Symmetric-Globular-Type y x
  inv-1-cell-Large-Symmetric-Globular-Type =
    inv-1-cell-is-symmetric-Large-Globular-Type
      is-symmetric-Large-Symmetric-Globular-Type
      _
      _

  is-symmetric-1-cell-globular-type-Large-Symmetric-Globular-Type :
    {l1 l2 : Level}
    (x : 0-cell-Large-Symmetric-Globular-Type l1)
    (y : 0-cell-Large-Symmetric-Globular-Type l2) 
    is-symmetric-Globular-Type
      ( 1-cell-globular-type-Large-Symmetric-Globular-Type x y)
  is-symmetric-1-cell-globular-type-Large-Symmetric-Globular-Type =
    is-symmetric-1-cell-globular-type-is-symmetric-Large-Globular-Type
      is-symmetric-Large-Symmetric-Globular-Type

open Large-Symmetric-Globular-Type public

Recent changes