Large symmetric globular types
Content created by Egbert Rijke.
Created on 2024-11-17.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.large-symmetric-globular-types where
Imports
open import foundation.large-binary-relations open import foundation.universe-levels open import globular-types.globular-types open import globular-types.large-globular-types open import globular-types.symmetric-globular-types
Idea
We say that a large globular type is
symmetric¶
if there is a symmetry action on its -cells for positive , mapping
-cells from x
to y
to -cells from y
to x
.
Definitions
Symmetry structure on a large globular type
record is-symmetric-Large-Globular-Type {α : Level → Level} {β : Level → Level → Level} (G : Large-Globular-Type α β) : UUω where field inv-1-cell-is-symmetric-Large-Globular-Type : is-symmetric-Large-Relation ( 0-cell-Large-Globular-Type G) ( 1-cell-Large-Globular-Type G) field is-symmetric-1-cell-globular-type-is-symmetric-Large-Globular-Type : {l1 l2 : Level} (x : 0-cell-Large-Globular-Type G l1) → (y : 0-cell-Large-Globular-Type G l2) → is-symmetric-Globular-Type ( 1-cell-globular-type-Large-Globular-Type G x y) open is-symmetric-Large-Globular-Type public
Large symmetric globular types
record Large-Symmetric-Globular-Type (α : Level → Level) (β : Level → Level → Level) : UUω where field large-globular-type-Large-Symmetric-Globular-Type : Large-Globular-Type α β 0-cell-Large-Symmetric-Globular-Type : (l1 : Level) → UU (α l1) 0-cell-Large-Symmetric-Globular-Type = 0-cell-Large-Globular-Type large-globular-type-Large-Symmetric-Globular-Type 1-cell-globular-type-Large-Symmetric-Globular-Type : {l1 l2 : Level} (x : 0-cell-Large-Symmetric-Globular-Type l1) (y : 0-cell-Large-Symmetric-Globular-Type l2) → Globular-Type (β l1 l2) (β l1 l2) 1-cell-globular-type-Large-Symmetric-Globular-Type = 1-cell-globular-type-Large-Globular-Type large-globular-type-Large-Symmetric-Globular-Type 1-cell-Large-Symmetric-Globular-Type : {l1 l2 : Level} (x : 0-cell-Large-Symmetric-Globular-Type l1) (y : 0-cell-Large-Symmetric-Globular-Type l2) → UU (β l1 l2) 1-cell-Large-Symmetric-Globular-Type = 1-cell-Large-Globular-Type large-globular-type-Large-Symmetric-Globular-Type field is-symmetric-Large-Symmetric-Globular-Type : is-symmetric-Large-Globular-Type large-globular-type-Large-Symmetric-Globular-Type inv-1-cell-Large-Symmetric-Globular-Type : {l1 l2 : Level} {x : 0-cell-Large-Symmetric-Globular-Type l1} {y : 0-cell-Large-Symmetric-Globular-Type l2} → 1-cell-Large-Symmetric-Globular-Type x y → 1-cell-Large-Symmetric-Globular-Type y x inv-1-cell-Large-Symmetric-Globular-Type = inv-1-cell-is-symmetric-Large-Globular-Type is-symmetric-Large-Symmetric-Globular-Type _ _ is-symmetric-1-cell-globular-type-Large-Symmetric-Globular-Type : {l1 l2 : Level} (x : 0-cell-Large-Symmetric-Globular-Type l1) (y : 0-cell-Large-Symmetric-Globular-Type l2) → is-symmetric-Globular-Type ( 1-cell-globular-type-Large-Symmetric-Globular-Type x y) is-symmetric-1-cell-globular-type-Large-Symmetric-Globular-Type = is-symmetric-1-cell-globular-type-is-symmetric-Large-Globular-Type is-symmetric-Large-Symmetric-Globular-Type open Large-Symmetric-Globular-Type public
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-11-17. Egbert Rijke. chore: Moving files about globular types to a new namespace (#1223).