The lesser limited principle of omniscience
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Maša Žaucer.
Created on 2022-08-08.
Last modified on 2025-01-07.
module foundation.lesser-limited-principle-of-omniscience where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.booleans open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.universal-quantification open import foundation.universe-levels open import foundation-core.fibers-of-maps open import foundation-core.propositions open import foundation-core.sets
Statement
The lesser limited principle of omniscience¶ (LLPO)
asserts that for any sequence of
booleans f : ℕ → bool
such that f n
is true for
at most one n
, then either f n
is false
for all even n
or f n
is false for all odd n
.
prop-LLPO : Prop lzero prop-LLPO = ∀' ( ℕ → bool) ( λ f → function-Prop ( is-prop (Σ ℕ (λ n → is-true (f n)))) ( disjunction-Prop ( ∀' ℕ (λ n → function-Prop (is-even-ℕ n) (is-false-Prop (f n)))) ( ∀' ℕ (λ n → function-Prop (is-odd-ℕ n) (is-false-Prop (f n)))))) LLPO : UU lzero LLPO = type-Prop prop-LLPO is-prop-LLPO : is-prop LLPO is-prop-LLPO = is-prop-type-Prop prop-LLPO
See also
- The principle of omniscience
- The limited principle of omniscience
- The weak limited principle of omniscience
- Markov’s principle
External links
- Taboos.LLPO at TypeTopology
- lesser limited principle of omniscience at Lab
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2023-12-12. Fredrik Bakke. Some minor refactoring surrounding Dedekind reals (#983).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644).