The lesser limited principle of omniscience

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Maša Žaucer.

Created on 2022-08-08.
Last modified on 2023-12-12.

module foundation.lesser-limited-principle-of-omniscience where
Imports
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.parity-natural-numbers

open import foundation.disjunction
open import foundation.universe-levels

open import foundation-core.fibers-of-maps
open import foundation-core.propositions
open import foundation-core.sets

open import univalent-combinatorics.standard-finite-types

Statement

The lesser limited principle of omniscience asserts that for any sequence f : ℕ → Fin 2 containing at most one 1, either f n = 0 for all even n or f n = 0 for all odd n.

LLPO : UU lzero
LLPO =
  (f :   Fin 2)  is-prop (fiber f (one-Fin 1)) 
  type-disjunction-Prop
    ( Π-Prop 
      ( λ n 
        function-Prop (is-even-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1))))
    ( Π-Prop 
      ( λ n 
        function-Prop (is-odd-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1))))

See also

Recent changes