The lesser limited principle of omniscience
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Maša Žaucer.
Created on 2022-08-08.
Last modified on 2023-12-12.
module foundation.lesser-limited-principle-of-omniscience where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.disjunction open import foundation.universe-levels open import foundation-core.fibers-of-maps open import foundation-core.propositions open import foundation-core.sets open import univalent-combinatorics.standard-finite-types
Statement
The lesser limited principle of omniscience asserts that for any sequence
f : ℕ → Fin 2
containing at most one 1
, either f n = 0
for all even n
or f n = 0
for all odd n
.
LLPO : UU lzero LLPO = (f : ℕ → Fin 2) → is-prop (fiber f (one-Fin 1)) → type-disjunction-Prop ( Π-Prop ℕ ( λ n → function-Prop (is-even-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1)))) ( Π-Prop ℕ ( λ n → function-Prop (is-odd-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1))))
See also
- The principle of omniscience
- The limited principle of omniscience
- The weak limited principle of omniscience
Recent changes
- 2023-12-12. Fredrik Bakke. Some minor refactoring surrounding Dedekind reals (#983).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-21. Fredrik Bakke. Formatting fixes (#530).