The category of semigroups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-03-17.
Last modified on 2025-01-06.
module group-theory.category-of-semigroups where
Imports
open import category-theory.categories open import category-theory.large-categories open import foundation.1-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.isomorphisms-semigroups open import group-theory.precategory-of-semigroups open import group-theory.semigroups
Idea
Since isomorphic semigroups are equal, the precategory of semigroups is a category.
Definition
The large category of semigroups
is-large-category-Semigroup : is-large-category-Large-Precategory Semigroup-Large-Precategory is-large-category-Semigroup G = fundamental-theorem-id (is-torsorial-iso-Semigroup G) (iso-eq-Semigroup G) extensionality-Semigroup : {l : Level} (G H : Semigroup l) → Id G H ≃ iso-Semigroup G H pr1 (extensionality-Semigroup G H) = iso-eq-Semigroup G H pr2 (extensionality-Semigroup G H) = is-large-category-Semigroup G H eq-iso-Semigroup : {l : Level} (G H : Semigroup l) → iso-Semigroup G H → Id G H eq-iso-Semigroup G H = map-inv-is-equiv (is-large-category-Semigroup G H) Semigroup-Large-Category : Large-Category lsuc (_⊔_) large-precategory-Large-Category Semigroup-Large-Category = Semigroup-Large-Precategory is-large-category-Large-Category Semigroup-Large-Category = is-large-category-Semigroup
The category of small semigroups
Semigroup-Category : (l : Level) → Category (lsuc l) l Semigroup-Category = category-Large-Category Semigroup-Large-Category
Corollaries
The type of semigroups is a 1-type
is-1-type-Semigroup : {l : Level} → is-1-type (Semigroup l) is-1-type-Semigroup {l} = is-1-type-obj-Category (Semigroup-Category l)
Recent changes
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).