Sums of natural numbers

Content created by Louis Wasserman.

Created on 2026-02-15.
Last modified on 2026-02-15.

module elementary-number-theory.sums-of-finite-sequences-of-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.monoid-of-natural-numbers-with-addition
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.strict-inequality-natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.constant-maps
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.unit-type
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import group-theory.sums-of-finite-sequences-of-elements-monoids

open import lists.finite-sequences
open import lists.lists

open import univalent-combinatorics.counting
open import univalent-combinatorics.standard-finite-types

Idea

The sums of finite sequences of natural numbers enjoy useful properties.

Definition

Sums of lists of natural numbers

sum-list-ℕ : list   
sum-list-ℕ = fold-list 0 add-ℕ

Sums of natural numbers indexed by a standard finite type

sum-fin-sequence-ℕ : (k : )  fin-sequence  k  
sum-fin-sequence-ℕ = sum-fin-sequence-type-Monoid ℕ-Monoid

Sums of natural numbers indexed by a type equipped with a counting

sum-count-ℕ : {l : Level} {A : UU l} (e : count A)  (f : A  )  
sum-count-ℕ (k , Fin-k≃A) f = sum-fin-sequence-ℕ k (f  map-equiv Fin-k≃A)

Bounded sums of natural numbers

bounded-sum-ℕ : (u : )  ((x : )  le-ℕ x u  )  
bounded-sum-ℕ zero-ℕ f = zero-ℕ
bounded-sum-ℕ (succ-ℕ u) f =
  add-ℕ
    ( bounded-sum-ℕ u  x H  f x (preserves-le-succ-ℕ x u H)))
    ( f u (succ-le-ℕ u))

Properties

Sums are invariant under homotopy

abstract
  htpy-sum-fin-sequence-ℕ :
    (k : ) {f g : Fin k  } (H : f ~ g) 
    sum-fin-sequence-ℕ k f  sum-fin-sequence-ℕ k g
  htpy-sum-fin-sequence-ℕ = htpy-sum-fin-sequence-type-Monoid ℕ-Monoid

  htpy-sum-count-ℕ :
    {l : Level} {A : UU l} (e : count A) {f g : A  } (H : f ~ g) 
    sum-count-ℕ e f  sum-count-ℕ e g
  htpy-sum-count-ℕ (pair k e) H = htpy-sum-fin-sequence-ℕ k (H ·r map-equiv e)

Summing up the same value m times is multiplication by m

abstract
  constant-sum-fin-sequence-ℕ :
    (m n : )  sum-fin-sequence-ℕ m (const (Fin m) n)  m *ℕ n
  constant-sum-fin-sequence-ℕ zero-ℕ n = refl
  constant-sum-fin-sequence-ℕ (succ-ℕ m) n =
    ap (_+ℕ n) (constant-sum-fin-sequence-ℕ m n)

  constant-sum-count-ℕ :
    {l : Level} {A : UU l} (e : count A) (n : ) 
    sum-count-ℕ e (const A n)  (number-of-elements-count e) *ℕ n
  constant-sum-count-ℕ (m , e) n = constant-sum-fin-sequence-ℕ m n

Each of the summands is less than or equal to the total sum

abstract
  leq-sum-fin-sequence-ℕ :
    (k : ) (f : Fin k  ) (x : Fin k)  leq-ℕ (f x) (sum-fin-sequence-ℕ k f)
  leq-sum-fin-sequence-ℕ (succ-ℕ k) f (inl i) =
    transitive-leq-ℕ
      ( f (inl i))
      ( sum-fin-sequence-ℕ k (f  inl))
      ( sum-fin-sequence-ℕ (succ-ℕ k) f)
      ( leq-add-ℕ (sum-fin-sequence-ℕ k (f  inl)) (f (neg-one-Fin k)))
      ( leq-sum-fin-sequence-ℕ k (f  inl) i)
  leq-sum-fin-sequence-ℕ (succ-ℕ k) f (inr star) =
    leq-add-ℕ' (f (neg-one-Fin k)) (sum-fin-sequence-ℕ k (f  inl))

Recent changes