Closed interval preserving maps between total orders
Content created by Louis Wasserman.
Created on 2025-10-02.
Last modified on 2025-10-02.
module order-theory.closed-interval-preserving-maps-total-orders where
Imports
open import foundation.images-subtypes open import foundation.propositions open import foundation.universe-levels open import order-theory.closed-interval-preserving-maps-posets open import order-theory.closed-intervals-total-orders open import order-theory.total-orders
Idea
A map between total orders f : X → Y
is
closed interval preserving¶
if the image of a
closed interval in X
is
always a closed interval in Y
. Equivalently, it is a
closed interval preserving map
on the underlying posets.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Total-Order l1 l2) (Y : Total-Order l3 l4) (f : type-Total-Order X → type-Total-Order Y) where is-closed-interval-map-prop-Total-Order : ([a,b] : closed-interval-Total-Order X) → ([c,d] : closed-interval-Total-Order Y) → Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-closed-interval-map-prop-Total-Order = is-closed-interval-map-prop-Poset ( poset-Total-Order X) ( poset-Total-Order Y) ( f) is-closed-interval-map-Total-Order : ([a,b] : closed-interval-Total-Order X) → ([c,d] : closed-interval-Total-Order Y) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-closed-interval-map-Total-Order [a,b] [c,d] = type-Prop (is-closed-interval-map-prop-Total-Order [a,b] [c,d])
Recent changes
- 2025-10-02. Louis Wasserman. Intervals and interval arithmetic (#1497).