Sequences of the online encyclopedia of integer sequences
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-10-24.
Last modified on 2025-01-06.
This file records formalized sequences of the Online Encyclopedia of Integer Sequences [OEIS].
module literature.oeis where
Imports
open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.function-types
Sequences
A000001 The number of groups of order n
open import finite-group-theory.finite-groups using ( number-of-groups-of-order)
A000002 The Kolakoski sequence
open import elementary-number-theory.kolakoski-sequence using ( kolakoski)
A000004 The zero sequence
A000004 : ℕ → ℕ A000004 _ = zero-ℕ
A000007 The characteristic function for 0
A000007 : ℕ → ℕ A000007 zero-ℕ = 1 A000007 (succ-ℕ _) = 0
A000010 Euler’s totient function
open import elementary-number-theory.eulers-totient-function using ( eulers-totient-function-relatively-prime)
A000012 All 1’s sequence
A000012 : ℕ → ℕ A000012 _ = 1
A000027 The positive integers
A000027 : ℕ → ℕ A000027 = succ-ℕ
A000040 The prime numbers
open import elementary-number-theory.infinitude-of-primes using ( prime-ℕ)
A000045 The Fibonacci sequence
open import elementary-number-theory.fibonacci-sequence using ( Fibonacci-ℕ)
A000058 Sylvester’s sequence
open import elementary-number-theory.sylvesters-sequence using ( sylvesters-sequence-ℕ)
A000079 Powers of 2
A000079 : ℕ → ℕ A000079 = exp-ℕ 2
A000108 The Catalan numbers
open import elementary-number-theory.catalan-numbers using ( catalan-numbers)
A000142 Factorials
open import elementary-number-theory.factorials using ( factorial-ℕ)
A000215 The Fermat numbers
open import elementary-number-theory.fermat-numbers using ( fermat-number-ℕ)
A000244 Powers of 3
A000244 : ℕ → ℕ A000244 = exp-ℕ 3
A000720 The prime counting function
open import elementary-number-theory.infinitude-of-primes using ( prime-counting-ℕ)
A000945 The Euclid–Mullin sequence
open import elementary-number-theory.euclid-mullin-sequence using ( euclid-mullin-ℕ)
A001175 Pisano periods
open import elementary-number-theory.pisano-periods using ( pisano-period)
A001177 The cofibonacci sequence
open import elementary-number-theory.cofibonacci using ( cofibonacci)
A001477 The natural numbers
A001477 : ℕ → ℕ A001477 = id
A003090 The number of main classes of Latin squares of order n
open import univalent-combinatorics.main-classes-of-latin-squares using ( number-of-main-classes-of-Latin-squares-of-order)
A006369 Collatz’ bijection
open import elementary-number-theory.collatz-bijection using ( map-collatz-bijection)
A027851 The number of semigroups of order n
up to isomorphism
open import finite-group-theory.finite-semigroups using ( number-of-semigroups-of-order)
A046859 The main diagonal of the Ackermann–Péter function
open import elementary-number-theory.ackermann-function using ( simplified-ackermann-ℕ)
A058129 The number of monoids of order n
up to isomorphism
open import finite-group-theory.finite-monoids using ( number-of-monoids-of-order)
References
- [OEIS]
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. website. URL: https://oeis.org.
Recent changes
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2024-10-25. Egbert Rijke. Sylvester’s sequence (#1210).
- 2024-10-24. Egbert Rijke. Move OEIS to literature (#1208).