Sequences of the online encyclopedia of integer sequences
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2024-10-24.
Last modified on 2025-08-09.
This file records formalized sequences of the Online Encyclopedia of Integer Sequences [OEIS].
module literature.oeis where
Imports
open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.function-types
Sequences
The number of groups of order n
OEIS: A000001
open import finite-group-theory.finite-groups using ( number-of-groups-of-order)
The Kolakoski sequence
OEIS: A000002
open import elementary-number-theory.kolakoski-sequence using ( kolakoski)
The zero sequence
OEIS: A000004
A000004 : ℕ → ℕ A000004 _ = zero-ℕ
The characteristic function for 0
OEIS: A000007
A000007 : ℕ → ℕ A000007 zero-ℕ = 1 A000007 (succ-ℕ _) = 0
Euler’s totient function
OEIS: A000010
open import elementary-number-theory.eulers-totient-function using ( eulers-totient-function-relatively-prime)
All 1’s sequence
OEIS: A000012
A000012 : ℕ → ℕ A000012 _ = 1
The positive integers
OEIS: A000027
A000027 : ℕ → ℕ A000027 = succ-ℕ
The prime numbers
OEIS: A000040
open import elementary-number-theory.infinitude-of-primes using ( prime-ℕ)
The Fibonacci sequence
OEIS: A000045
open import elementary-number-theory.fibonacci-sequence using ( Fibonacci-ℕ)
Sylvester’s sequence
OEIS: A000058
open import elementary-number-theory.sylvesters-sequence using ( sylvesters-sequence-ℕ)
Powers of 2
OEIS: A000079
A000079 : ℕ → ℕ A000079 = exp-ℕ 2
The Catalan numbers
OEIS: A000108
open import elementary-number-theory.catalan-numbers using ( catalan-numbers)
The Bell numbers
OEIS: A000110
open import elementary-number-theory.bell-numbers using ( bell-number-ℕ)
Factorials
OEIS: A000142
open import elementary-number-theory.factorials using ( factorial-ℕ)
The Fermat numbers
OEIS: A000215
open import elementary-number-theory.fermat-numbers using ( fermat-number-ℕ)
Powers of 3
OEIS: A000244
A000244 : ℕ → ℕ A000244 = exp-ℕ 3
The prime counting function
OEIS: A000720
open import elementary-number-theory.infinitude-of-primes using ( prime-counting-ℕ)
The Euclid–Mullin sequence
OEIS: A000945
open import elementary-number-theory.euclid-mullin-sequence using ( euclid-mullin-ℕ)
Pisano periods
OEIS: A001175
open import elementary-number-theory.pisano-periods using ( pisano-period)
The cofibonacci sequence
OEIS: A001177
open import elementary-number-theory.cofibonacci using ( cofibonacci)
The natural numbers
OEIS: A001477
A001477 : ℕ → ℕ A001477 = id
The number of main classes of Latin squares of order n
OEIS: A003090
open import univalent-combinatorics.main-classes-of-latin-squares using ( number-of-main-classes-of-Latin-squares-of-order)
Collatz’ bijection
OEIS: A006369
open import elementary-number-theory.collatz-bijection using ( map-collatz-bijection)
The number of semigroups of order n
up to isomorphism
OEIS: A027851
open import finite-group-theory.finite-semigroups using ( number-of-semigroups-of-order)
The main diagonal of the Ackermann–Péter function
OEIS: A046859
open import elementary-number-theory.ackermann-function using ( simplified-ackermann-ℕ)
The number of monoids of order n
up to isomorphism
OEIS: A058129
open import finite-group-theory.finite-monoids using ( number-of-monoids-of-order)
References
- [OEIS]
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. website. URL: https://oeis.org.
Recent changes
- 2025-08-09. Vojtěch Štěpančík. Website/CI updates (#1469).
- 2025-02-11. Egbert Rijke. The Bell numbers (#1315).
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2024-10-25. Egbert Rijke. Sylvester’s sequence (#1210).
- 2024-10-24. Egbert Rijke. Move OEIS to literature (#1208).