Metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
Idea
Metric spaces are types structured with a concept of distance on its elements.
Since we operate in a constructive setting, the concept of distance is captured
by considering upper bounds on the distance between points, rather than by a
distance function as in the classical approach. Thus, a metric space A
is
defined by a family of neighborhood
relations on it indexed by the
positive rational numbers
ℚ⁺
,
N : ℚ⁺ → A → A → Prop l
that satisfies certain axioms. Constructing a proof of N d x y
amounts to
saying that d
is an upper bound on the distance from x
to y
.
The neighborhood relation on a metric space must satisfy the following axioms:
- Reflexivity. Every positive rational
d
is an upper bound on the distance fromx
to itself. - Symmetry. If
d
is an upper bound on the distance fromx
toy
, thend
is an upper bound on the distance fromy
tox
. - Triangularity. If
d
is an upper bound on the distance fromx
toy
, andd'
is an upper bound on the distance fromy
toz
, thend + d'
is an upper bound on the distance fromx
toz
.
Finally, we ask that our metric spaces are extensional, which amounts to the property of indistinguishability of identicals
- If every positive rational
d
is an upper bound on the distance fromx
toy
, thenx
andy
are equal.
Instances of metric spaces
Metric space | File |
---|---|
Metric space of Cauchy approximations in a metric space | metric-spaces. metric-space-of-cauchy-approximations-in-a-metric-space |
Metric space of convergent Cauchy approximations in a metric space | metric-spaces. metric-space-of-convergent-cauchy-approximations-in-a-metric-space |
Metric space of rational numbers | metric-spaces.metric-space-of-rational-numbers |
Metric space of rational numbers with open neighborhoods | metric-spaces.metric-space-of-rational-numbers-with-open-neighborhoods |
Metric space of real numbers | real-numbers.metric-space-of-real-numbers |
Modules in the metric spaces namespace
module metric-spaces where open import metric-spaces.category-of-metric-spaces-and-isometries public open import metric-spaces.category-of-metric-spaces-and-short-functions public open import metric-spaces.cauchy-approximations-metric-spaces public open import metric-spaces.cauchy-approximations-premetric-spaces public open import metric-spaces.closed-premetric-structures public open import metric-spaces.complete-metric-spaces public open import metric-spaces.convergent-cauchy-approximations-metric-spaces public open import metric-spaces.dependent-products-metric-spaces public open import metric-spaces.discrete-premetric-structures public open import metric-spaces.equality-of-metric-spaces public open import metric-spaces.equality-of-premetric-spaces public open import metric-spaces.extensional-premetric-structures public open import metric-spaces.functions-metric-spaces public open import metric-spaces.functor-category-set-functions-isometry-metric-spaces public open import metric-spaces.functor-category-short-isometry-metric-spaces public open import metric-spaces.induced-premetric-structures-on-preimages public open import metric-spaces.isometric-equivalences-premetric-spaces public open import metric-spaces.isometries-metric-spaces public open import metric-spaces.isometries-premetric-spaces public open import metric-spaces.limits-of-cauchy-approximations-in-premetric-spaces public open import metric-spaces.metric-space-of-cauchy-approximations-in-a-metric-space public open import metric-spaces.metric-space-of-convergent-cauchy-approximations-in-a-metric-space public open import metric-spaces.metric-space-of-rational-numbers public open import metric-spaces.metric-space-of-rational-numbers-with-open-neighborhoods public open import metric-spaces.metric-spaces public open import metric-spaces.metric-structures public open import metric-spaces.monotonic-premetric-structures public open import metric-spaces.ordering-premetric-structures public open import metric-spaces.precategory-of-metric-spaces-and-functions public open import metric-spaces.precategory-of-metric-spaces-and-isometries public open import metric-spaces.precategory-of-metric-spaces-and-short-functions public open import metric-spaces.premetric-spaces public open import metric-spaces.premetric-structures public open import metric-spaces.pseudometric-spaces public open import metric-spaces.pseudometric-structures public open import metric-spaces.reflexive-premetric-structures public open import metric-spaces.saturated-metric-spaces public open import metric-spaces.short-functions-metric-spaces public open import metric-spaces.short-functions-premetric-spaces public open import metric-spaces.subspaces-metric-spaces public open import metric-spaces.symmetric-premetric-structures public open import metric-spaces.triangular-premetric-structures public
References
Our setup for metric space theory closely follows [Boo20].
- [Boo20]
- Auke Bart Booij. Analysis in univalent type theory. PhD thesis, University of Birmingham, 2020. URL: https://etheses.bham.ac.uk/id/eprint/10411/7/Booij20PhD.pdf.
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).