Precomposition of dependent functions
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module foundation-core.precomposition-dependent-functions where
Imports
open import foundation.action-on-identifications-dependent-functions open import foundation.dependent-homotopies open import foundation.universe-levels open import foundation-core.homotopies
Idea
Given a function f : A → B
and a type family X
over B
, the
precomposition function
- ∘ f : ((y : B) → X b) → ((x : A) → X (f x))
is defined by λ h x → h (f x)
.
Definitions
The precomposition operation on dependent function
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) where precomp-Π : ((b : B) → C b) → ((a : A) → C (f a)) precomp-Π h a = h (f a)
Properties
The action of dependent precomposition on homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g) (C : B → UU l3) (h : (y : B) → C y) where htpy-precomp-Π : dependent-homotopy (λ _ → C) H (precomp-Π f C h) (precomp-Π g C h) htpy-precomp-Π x = apd h (H x)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).