Kernels of linear maps between left modules over rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.kernels-linear-maps-left-modules-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.subtypes open import foundation.universe-levels open import group-theory.kernels-homomorphisms-abelian-groups open import group-theory.subgroups-abelian-groups open import linear-algebra.left-modules-rings open import linear-algebra.left-submodules-rings open import linear-algebra.linear-maps-left-modules-rings open import linear-algebra.subsets-left-modules-rings open import ring-theory.rings
Idea
The kernel¶ of a linear map from a left module over a ring to another left module over the same ring is the preimage of zero under the linear map.
Definition
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : linear-map-left-module-Ring R M N) where kernel-hom-ab-linear-map-left-module-Ring : Subgroup-Ab l3 (ab-left-module-Ring R M) kernel-hom-ab-linear-map-left-module-Ring = kernel-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R N) ( hom-ab-linear-map-left-module-Ring R M N f) subset-kernel-linear-map-left-module-Ring : subset-left-module-Ring l3 R M subset-kernel-linear-map-left-module-Ring = subset-Subgroup-Ab ( ab-left-module-Ring R M) ( kernel-hom-ab-linear-map-left-module-Ring)
Properties
The kernel of a linear map is closed under addition
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : linear-map-left-module-Ring R M N) where abstract is-closed-under-addition-subset-kernel-linear-map-left-module-Ring : is-closed-under-addition-subset-left-module-Ring ( R) ( M) ( subset-kernel-linear-map-left-module-Ring R M N f) is-closed-under-addition-subset-kernel-linear-map-left-module-Ring _ _ = is-closed-under-addition-subset-kernel-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R N) ( hom-ab-linear-map-left-module-Ring R M N f)
The kernel of a linear map is closed under scalar multiplication
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : linear-map-left-module-Ring R M N) where abstract is-closed-under-multiplication-subset-kernel-linear-map-left-module-Ring : is-closed-under-scalar-multiplication-subset-left-module-Ring ( R) ( M) ( subset-kernel-linear-map-left-module-Ring R M N f) is-closed-under-multiplication-subset-kernel-linear-map-left-module-Ring c x 0=fx = inv ( equational-reasoning map-linear-map-left-module-Ring R M N f ( mul-left-module-Ring R M c x) = mul-left-module-Ring R N c ( map-linear-map-left-module-Ring R M N f x) by is-homogeneous-map-linear-map-left-module-Ring R M N f c x = mul-left-module-Ring R N c (zero-left-module-Ring R N) by ap (mul-left-module-Ring R N c) (inv 0=fx) = zero-left-module-Ring R N by right-zero-law-mul-left-module-Ring R N c)
The kernel of a linear map is a submodule
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : linear-map-left-module-Ring R M N) where is-left-submodule-kernel-linear-map-left-module-Ring : is-left-submodule-Ring R M ( subset-kernel-linear-map-left-module-Ring R M N f) is-left-submodule-kernel-linear-map-left-module-Ring = ( inv (is-zero-map-zero-linear-map-left-module-Ring R M N f) , is-closed-under-addition-subset-kernel-linear-map-left-module-Ring ( R) ( M) ( N) ( f) , is-closed-under-multiplication-subset-kernel-linear-map-left-module-Ring ( R) ( M) ( N) ( f)) kernel-linear-map-left-module-Ring : left-submodule-Ring l3 R M kernel-linear-map-left-module-Ring = ( subset-kernel-linear-map-left-module-Ring R M N f , is-left-submodule-kernel-linear-map-left-module-Ring) left-module-kernel-linear-map-left-module-Ring : left-module-Ring (l2 ⊔ l3) R left-module-kernel-linear-map-left-module-Ring = left-module-left-submodule-Ring R M kernel-linear-map-left-module-Ring
See also
External links
- Kernel at Wikidata
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).