Joins of right ideals of rings
Content created by Fredrik Bakke, Egbert Rijke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-06-09.
module ring-theory.joins-right-ideals-rings where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.unions-subtypes open import foundation.universe-levels open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets open import order-theory.similarity-of-elements-large-posets open import ring-theory.poset-of-right-ideals-rings open import ring-theory.right-ideals-generated-by-subsets-rings open import ring-theory.right-ideals-rings open import ring-theory.rings open import ring-theory.subsets-rings
Idea
The join of a family of right ideals of rings is the least right ideal containing all the right ideals in the family of right ideals. In other words, the join of a family of right ideals is the right ideal generated by the union of the underlying subsets of the right ideals in the family of right ideals.
Definitions
The predicate of being the join of a family of right ideals
module _ {l1 l2 l3 : Level} (R : Ring l1) {U : UU l2} (I : U → right-ideal-Ring l3 R) where is-join-family-of-right-ideals-Ring : {l4 : Level} → right-ideal-Ring l4 R → UUω is-join-family-of-right-ideals-Ring = is-least-upper-bound-family-of-elements-Large-Poset ( right-ideal-Ring-Large-Poset R) ( I) inclusion-is-join-family-of-right-ideals-Ring : {l4 l5 : Level} (J : right-ideal-Ring l4 R) → is-join-family-of-right-ideals-Ring J → (K : right-ideal-Ring l5 R) → ((α : U) → leq-right-ideal-Ring R (I α) K) → leq-right-ideal-Ring R J K inclusion-is-join-family-of-right-ideals-Ring J H K = pr1 (H K) contains-right-ideal-is-join-family-of-right-ideals-Ring : {l4 : Level} (J : right-ideal-Ring l4 R) → is-join-family-of-right-ideals-Ring J → {α : U} → leq-right-ideal-Ring R (I α) J contains-right-ideal-is-join-family-of-right-ideals-Ring J H {α} = pr2 (H J) (refl-leq-right-ideal-Ring R J) α
The join of a family of right ideals
module _ {l1 l2 l3 : Level} (R : Ring l1) {U : UU l2} (I : U → right-ideal-Ring l3 R) where generating-subset-join-family-of-right-ideals-Ring : subset-Ring (l2 ⊔ l3) R generating-subset-join-family-of-right-ideals-Ring = union-family-of-subtypes (λ α → subset-right-ideal-Ring R (I α)) join-family-of-right-ideals-Ring : right-ideal-Ring (l1 ⊔ l2 ⊔ l3) R join-family-of-right-ideals-Ring = right-ideal-family-of-subsets-Ring R (λ α → subset-right-ideal-Ring R (I α)) forward-inclusion-is-join-join-family-of-right-ideals-Ring : {l4 : Level} (K : right-ideal-Ring l4 R) → ((α : U) → leq-right-ideal-Ring R (I α) K) → leq-right-ideal-Ring R join-family-of-right-ideals-Ring K forward-inclusion-is-join-join-family-of-right-ideals-Ring K H = is-right-ideal-generated-by-family-of-subsets-right-ideal-family-of-subsets-Ring ( R) ( λ α → subset-right-ideal-Ring R (I α)) ( K) ( λ α x → H α x) backward-inclusion-is-join-join-family-of-right-ideals-Ring : {l4 : Level} (K : right-ideal-Ring l4 R) → leq-right-ideal-Ring R join-family-of-right-ideals-Ring K → (α : U) → leq-right-ideal-Ring R (I α) K backward-inclusion-is-join-join-family-of-right-ideals-Ring K H _ x p = H ( x) ( contains-subset-right-ideal-family-of-subsets-Ring R ( λ α → subset-right-ideal-Ring R (I α)) ( x) ( p)) is-join-join-family-of-right-ideals-Ring : is-join-family-of-right-ideals-Ring R I join-family-of-right-ideals-Ring pr1 (is-join-join-family-of-right-ideals-Ring K) = forward-inclusion-is-join-join-family-of-right-ideals-Ring K pr2 (is-join-join-family-of-right-ideals-Ring K) = backward-inclusion-is-join-join-family-of-right-ideals-Ring K inclusion-join-family-of-right-ideals-Ring : {l4 : Level} (J : right-ideal-Ring l4 R) → ((α : U) → leq-right-ideal-Ring R (I α) J) → leq-right-ideal-Ring R join-family-of-right-ideals-Ring J inclusion-join-family-of-right-ideals-Ring = inclusion-is-join-family-of-right-ideals-Ring R I ( join-family-of-right-ideals-Ring) ( is-join-join-family-of-right-ideals-Ring) contains-right-ideal-join-family-of-right-ideals-Ring : {α : U} → leq-right-ideal-Ring R (I α) join-family-of-right-ideals-Ring contains-right-ideal-join-family-of-right-ideals-Ring = contains-right-ideal-is-join-family-of-right-ideals-Ring R I ( join-family-of-right-ideals-Ring) ( is-join-join-family-of-right-ideals-Ring)
The large suplattice of right ideals in a ring
module _ {l1 : Level} (R : Ring l1) where is-large-suplattice-right-ideal-Ring-Large-Poset : is-large-suplattice-Large-Poset l1 (right-ideal-Ring-Large-Poset R) sup-has-least-upper-bound-family-of-elements-Large-Poset ( is-large-suplattice-right-ideal-Ring-Large-Poset I) = join-family-of-right-ideals-Ring R I is-least-upper-bound-sup-has-least-upper-bound-family-of-elements-Large-Poset ( is-large-suplattice-right-ideal-Ring-Large-Poset I) = is-join-join-family-of-right-ideals-Ring R I right-ideal-Ring-Large-Suplattice : Large-Suplattice (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) l1 large-poset-Large-Suplattice right-ideal-Ring-Large-Suplattice = right-ideal-Ring-Large-Poset R is-large-suplattice-Large-Suplattice right-ideal-Ring-Large-Suplattice = is-large-suplattice-right-ideal-Ring-Large-Poset
Properties
If I α ⊆ J α
for each α
, then ⋁ I ⊆ ⋁ J
module _ {l1 l2 l3 l4 : Level} (A : Ring l1) {U : UU l2} (I : U → right-ideal-Ring l3 A) (J : U → right-ideal-Ring l4 A) (H : (α : U) → leq-right-ideal-Ring A (I α) (J α)) where preserves-order-join-family-of-right-ideals-Ring : leq-right-ideal-Ring A ( join-family-of-right-ideals-Ring A I) ( join-family-of-right-ideals-Ring A J) preserves-order-join-family-of-right-ideals-Ring = preserves-order-sup-Large-Suplattice ( right-ideal-Ring-Large-Suplattice A) { x = I} { y = J} ( H)
The operation S ↦ (S)
preserves joins
module _ {l1 l2 l3 : Level} (R : Ring l1) {U : UU l2} (S : U → subset-Ring l3 R) where is-least-upper-bound-join-right-ideal-subset-Ring : is-least-upper-bound-family-of-elements-Large-Poset ( right-ideal-Ring-Large-Poset R) ( λ α → right-ideal-subset-Ring R (S α)) ( right-ideal-subset-Ring R (union-family-of-subtypes S)) is-least-upper-bound-join-right-ideal-subset-Ring = preserves-least-upper-bounds-right-ideal-subset-Ring R S ( union-family-of-subtypes S) ( is-least-upper-bound-union-family-of-subtypes S) sim-preserves-join-right-ideal-subset-Ring : sim-right-ideal-Ring R ( right-ideal-subset-Ring R (union-family-of-subtypes S)) ( join-family-of-right-ideals-Ring R ( λ α → right-ideal-subset-Ring R (S α))) sim-preserves-join-right-ideal-subset-Ring = sim-is-least-upper-bound-family-of-elements-Large-Poset ( right-ideal-Ring-Large-Poset R) { x = λ α → right-ideal-subset-Ring R (S α)} { y = right-ideal-subset-Ring R (union-family-of-subtypes S)} { z = join-family-of-right-ideals-Ring R ( λ α → right-ideal-subset-Ring R (S α))} ( is-least-upper-bound-join-right-ideal-subset-Ring) ( is-join-join-family-of-right-ideals-Ring R ( λ α → right-ideal-subset-Ring R (S α))) preserves-join-right-ideal-subset-Ring : right-ideal-subset-Ring R (union-family-of-subtypes S) = join-family-of-right-ideals-Ring R (λ α → right-ideal-subset-Ring R (S α)) preserves-join-right-ideal-subset-Ring = eq-sim-Large-Poset ( right-ideal-Ring-Large-Poset R) ( right-ideal-subset-Ring R (union-family-of-subtypes S)) ( join-family-of-right-ideals-Ring R ( λ α → right-ideal-subset-Ring R (S α))) ( sim-preserves-join-right-ideal-subset-Ring)
Recent changes
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).