Transport along identifications

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-09-11.
Last modified on 2025-01-07.

module foundation-core.transport-along-identifications where
Imports
open import foundation.action-on-identifications-functions
open import foundation.universe-levels

open import foundation-core.function-types
open import foundation-core.identity-types

Idea

Given a type family B over A, an identification p : x = y in A and an element b : B x, we can transport the element b along the identification p to obtain an element tr B p b : B y.

The fact that tr B p is an equivalence is recorded in foundation.transport-along-identifications.

Definitions

Transport

tr :
  {l1 l2 : Level} {A : UU l1} (B : A  UU l2) {x y : A} (p : x  y)  B x  B y
tr B refl b = b

Properties

The dependent action of a family of maps over a map on identifications in the base type

tr-ap :
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : A  UU l2} {C : UU l3} {D : C  UU l4}
  (f : A  C) (g : (x : A)  B x  D (f x))
  {x y : A} (p : x  y) (z : B x) 
  tr D (ap f p) (g x z)  g y (tr B p z)
tr-ap f g refl z = refl

Every family of maps preserves transport

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : I  UU l2} {B : I  UU l3}
  (f : (i : I)  A i  B i)
  where

  preserves-tr :
    {i j : I} (p : i  j) (x : A i) 
    f j (tr A p x)  tr B p (f i x)
  preserves-tr refl x = refl

  compute-preserves-tr :
    {i j : I} (p : i  j) (x : A i) 
    preserves-tr p x 
    inv (tr-ap id f p x)  ap  q  tr B q (f i x)) (ap-id p)
  compute-preserves-tr refl x = refl

Substitution law for transport

substitution-law-tr :
  {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (B : A  UU l3) (f : X  A)
  {x y : X} (p : x  y) {x' : B (f x)} 
  tr B (ap f p) x'  tr (B  f) p x'
substitution-law-tr B f p {x'} = tr-ap f  _  id) p x'

Transport preserves concatenation of identifications

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  where

  tr-concat :
    {x y z : A} (p : x  y) (q : y  z) (b : B x) 
    tr B (p  q) b  tr B q (tr B p b)
  tr-concat refl q b = refl

Transposing transport along the inverse of an identification

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  where

  eq-transpose-tr :
    {x y : A} (p : x  y) {u : B x} {v : B y} 
    v  tr B p u  tr B (inv p) v  u
  eq-transpose-tr refl q = q

  eq-transpose-tr' :
    {x y : A} (p : x  y) {u : B x} {v : B y} 
    tr B p u  v  u  tr B (inv p) v
  eq-transpose-tr' refl q = q

Computing maps out of identity types as transports

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {a : A}
  (f : (x : A)  a  x  B x)
  where

  compute-map-out-of-identity-type :
    (x : A) (p : a  x)  f x p  tr B p (f a refl)
  compute-map-out-of-identity-type x refl = refl

Computing transport in the type family of identifications with a fixed target

tr-Id-left :
  {l : Level} {A : UU l} {a b c : A} (q : b  c) (p : b  a) 
  tr (_= a) q p  inv q  p
tr-Id-left refl p = refl

Computing transport in the type family of identifications with a fixed source

tr-Id-right :
  {l : Level} {A : UU l} {a b c : A} (q : b  c) (p : a  b) 
  tr (a =_) q p  p  q
tr-Id-right refl p = inv right-unit

Recent changes