The field of rational numbers
Content created by Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2024-04-25.
module elementary-number-theory.field-of-rational-numbers where
Imports
open import commutative-algebra.discrete-fields open import elementary-number-theory.multiplicative-group-of-rational-numbers open import elementary-number-theory.nonzero-rational-numbers open import elementary-number-theory.ring-of-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import ring-theory.division-rings
Idea
The type of rational numbers equipped with addition and multiplication is a discrete field, i.e., a commutative ring whose nonzero elements are invertible.
Definitions
The ring of rational numbers is a division ring
is-division-ring-ℚ : is-division-Ring ring-ℚ pr1 is-division-ring-ℚ = is-nonzero-one-ℚ ∘ inv pr2 is-division-ring-ℚ x H = is-invertible-element-ring-is-nonzero-ℚ x (H ∘ inv)
The rational numbers form a discrete field
is-discrete-field-ℚ : is-discrete-field-Commutative-Ring commutative-ring-ℚ is-discrete-field-ℚ = is-division-ring-ℚ
Recent changes
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).