Linear maps on vector spaces
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.linear-maps-vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.linear-maps-left-modules-rings open import linear-algebra.vector-spaces
Idea
A
linear map¶
from a vector space V over a
Heyting field F to another vector
space W over F is a
linear map from V as a
left module over the
ring associated with F to W as the corresponding
left module.
Definition
module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (f : type-Vector-Space F V → type-Vector-Space F W) where is-additive-map-prop-Vector-Space : Prop (l2 ⊔ l3) is-additive-map-prop-Vector-Space = is-additive-map-prop-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( f) is-additive-map-Vector-Space : UU (l2 ⊔ l3) is-additive-map-Vector-Space = type-Prop is-additive-map-prop-Vector-Space is-homogeneous-map-prop-Vector-Space : Prop (l1 ⊔ l2 ⊔ l3) is-homogeneous-map-prop-Vector-Space = is-homogeneous-map-prop-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( f) is-homogeneous-map-Vector-Space : UU (l1 ⊔ l2 ⊔ l3) is-homogeneous-map-Vector-Space = type-Prop is-homogeneous-map-prop-Vector-Space is-linear-map-prop-Vector-Space : Prop (l1 ⊔ l2 ⊔ l3) is-linear-map-prop-Vector-Space = is-linear-map-prop-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( f) is-linear-map-Vector-Space : UU (l1 ⊔ l2 ⊔ l3) is-linear-map-Vector-Space = type-Prop is-linear-map-prop-Vector-Space linear-map-Vector-Space : {l1 l2 l3 : Level} (F : Heyting-Field l1) → Vector-Space l2 F → Vector-Space l3 F → UU (l1 ⊔ l2 ⊔ l3) linear-map-Vector-Space F V W = type-subtype (is-linear-map-prop-Vector-Space F V W) module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (f : linear-map-Vector-Space F V W) where map-linear-map-Vector-Space : type-Vector-Space F V → type-Vector-Space F W map-linear-map-Vector-Space = pr1 f is-linear-map-linear-map-Vector-Space : is-linear-map-Vector-Space F V W map-linear-map-Vector-Space is-linear-map-linear-map-Vector-Space = pr2 f is-additive-map-linear-map-Vector-Space : is-additive-map-Vector-Space F V W map-linear-map-Vector-Space is-additive-map-linear-map-Vector-Space = pr1 is-linear-map-linear-map-Vector-Space is-homogeneous-map-linear-map-Vector-Space : is-homogeneous-map-Vector-Space F V W map-linear-map-Vector-Space is-homogeneous-map-linear-map-Vector-Space = pr2 is-linear-map-linear-map-Vector-Space
Properties
A linear map maps zero to zero
module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (f : linear-map-Vector-Space F V W) where abstract is-zero-map-zero-linear-map-Vector-Space : is-zero-Vector-Space F W ( map-linear-map-Vector-Space F V W f (zero-Vector-Space F V)) is-zero-map-zero-linear-map-Vector-Space = is-zero-map-zero-linear-map-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( f)
A linear map maps -v to the negation of the map of v
module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (f : linear-map-Vector-Space F V W) where abstract map-neg-linear-map-Vector-Space : (v : type-Vector-Space F V) → map-linear-map-Vector-Space F V W f (neg-Vector-Space F V v) = neg-Vector-Space F W (map-linear-map-Vector-Space F V W f v) map-neg-linear-map-Vector-Space = map-neg-linear-map-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( f)
The composition of linear maps is linear
module _ {l1 l2 l3 l4 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (X : Vector-Space l4 F) (g : type-Vector-Space F W → type-Vector-Space F X) (f : type-Vector-Space F V → type-Vector-Space F W) where abstract is-linear-map-comp-Vector-Space : is-linear-map-Vector-Space F W X g → is-linear-map-Vector-Space F V W f → is-linear-map-Vector-Space F V X (g ∘ f) is-linear-map-comp-Vector-Space = is-linear-map-comp-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( X) ( g) ( f)
The linear composition of linear maps between vector spaces
module _ {l1 l2 l3 l4 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (X : Vector-Space l4 F) (g : linear-map-Vector-Space F W X) (f : linear-map-Vector-Space F V W) where comp-linear-map-Vector-Space : linear-map-Vector-Space F V X comp-linear-map-Vector-Space = comp-linear-map-left-module-Ring ( ring-Heyting-Field F) ( V) ( W) ( X) ( g) ( f)
External links
- Linear map at Wikidata
- Linear maps on Wikipedia
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).