Double loop spaces

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Raymond Baker.

Created on 2022-03-10.
Last modified on 2024-02-19.

module synthetic-homotopy-theory.double-loop-spaces where
Imports
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-identifications
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.path-algebra
open import foundation.universe-levels
open import foundation.whiskering-identifications-concatenation

open import structured-types.pointed-equivalences
open import structured-types.pointed-types

open import synthetic-homotopy-theory.functoriality-loop-spaces
open import synthetic-homotopy-theory.iterated-loop-spaces
open import synthetic-homotopy-theory.loop-spaces

Idea

The double loop space of a pointed type A is the loop space of the loop space of A.

Definition

module _
  {l : Level}
  where

  Ω² : Pointed-Type l  Pointed-Type l
  Ω² A = iterated-loop-space 2 A

  type-Ω² : {A : UU l} (a : A)  UU l
  type-Ω² a = refl {x = a}  refl {x = a}

  refl-Ω² : {A : UU l} {a : A}  type-Ω² a
  refl-Ω² = refl

Vertical and horizontal concatenation operations on double loop

spaces.

vertical-concat-Ω² :
  {l : Level} {A : UU l} {a : A}  type-Ω² a  type-Ω² a  type-Ω² a
vertical-concat-Ω² α β = vertical-concat-Id² α β

horizontal-concat-Ω² :
  {l : Level} {A : UU l} {a : A}  type-Ω² a  type-Ω² a  type-Ω² a
horizontal-concat-Ω² α β = horizontal-concat-Id² α β

Unit laws horizontal, vertical concatenation, and whiskering

module _
  {l : Level} {A : UU l}
  where

  left-unit-law-vertical-concat-Ω² :
    {a : A} {α : type-Ω² a}  vertical-concat-Ω² refl-Ω² α  α
  left-unit-law-vertical-concat-Ω² = left-unit

  right-unit-law-vertical-concat-Ω² :
    {a : A} {α : type-Ω² a}  vertical-concat-Ω² α refl-Ω²  α
  right-unit-law-vertical-concat-Ω² = right-unit

  left-unit-law-horizontal-concat-Ω² :
    {a : A} {α : type-Ω² a} 
    horizontal-concat-Ω² refl-Ω² α  α
  left-unit-law-horizontal-concat-Ω² {α = α} =
    compute-left-refl-horizontal-concat-Id² α  ap-id α

  naturality-right-unit :
    {x y : A} {p q : x  y} (α : p  q) 
    coherence-square-identifications
      ( right-unit)
      ( right-whisker-concat α refl)
      ( α)
      ( right-unit)
  naturality-right-unit {p = refl} refl = refl

  naturality-right-unit-Ω² :
    {x : A} (α : type-Ω² x)  right-whisker-concat α refl  α
  naturality-right-unit-Ω² α = inv right-unit  naturality-right-unit α

  right-unit-law-horizontal-concat-Ω² :
    {a : A} {α : type-Ω² a}  horizontal-concat-Ω² α refl-Ω²  α
  right-unit-law-horizontal-concat-Ω² {α = α} =
    compute-right-refl-horizontal-concat-Id² α  naturality-right-unit-Ω² α

  left-unit-law-left-whisker-Ω² :
    {a : A} (α : type-Ω² a)  left-whisker-concat (refl-Ω (A , a)) α  α
  left-unit-law-left-whisker-Ω² α =
    left-unit-law-left-whisker-concat α

  right-unit-law-right-whisker-Ω² :
    {a : A} (α : type-Ω² a)  right-whisker-concat α (refl-Ω (A , a))  α
  right-unit-law-right-whisker-Ω² α =
    inv (right-unit-law-right-whisker-concat α  right-unit)

The interchange law for double loop spaces

interchange-Ω² :
  {l : Level} {A : UU l} {a : A} (α β γ δ : type-Ω² a) 
  Id
    ( horizontal-concat-Ω² (vertical-concat-Ω² α β) (vertical-concat-Ω² γ δ))
    ( vertical-concat-Ω² (horizontal-concat-Ω² α γ) (horizontal-concat-Ω² β δ))
interchange-Ω² = interchange-Id²

Properties

The loop space of a pointed type is equivalent to a double loop space

module _
  {l : Level} (A : Pointed-Type l) {x : type-Pointed-Type A}
  (p : point-Pointed-Type A  x)
  where

  pointed-equiv-2-loop-pointed-identity :
    Ω (point-Pointed-Type A  x , p) ≃∗ Ω² A
  pointed-equiv-2-loop-pointed-identity =
    pointed-equiv-Ω-pointed-equiv (pointed-equiv-loop-pointed-identity A p)

Recent changes