Negation
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Elisabeth Stenholm and Eléonore Mangel.
Created on 2022-01-27.
Last modified on 2025-01-07.
module foundation.negation where open import foundation-core.negation public
Imports
open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions
Idea
The
Curry–Howard interpretation
of negation in type theory is the interpretation of the proposition P ⇒ ⊥
using propositions as types. Thus, the negation of a type A
is the type
A → empty
.
Properties
The negation of a type is a proposition
is-prop-neg : {l : Level} {A : UU l} → is-prop (¬ A) is-prop-neg = is-prop-function-type is-prop-empty neg-type-Prop : {l1 : Level} → UU l1 → Prop l1 neg-type-Prop A = ¬ A , is-prop-neg neg-Prop : {l1 : Level} → Prop l1 → Prop l1 neg-Prop P = neg-type-Prop (type-Prop P) type-neg-Prop : {l1 : Level} → Prop l1 → UU l1 type-neg-Prop P = type-Prop (neg-Prop P) infix 25 ¬'_ ¬'_ : {l1 : Level} → Prop l1 → Prop l1 ¬'_ = neg-Prop eq-neg : {l : Level} {A : UU l} {p q : ¬ A} → p = q eq-neg = eq-is-prop is-prop-neg
Reductio ad absurdum
reductio-ad-absurdum : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → P → ¬ P → Q reductio-ad-absurdum p np = ex-falso (np p)
Logically equivalent types have logically equivalent negations
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} where iff-neg : X ↔ Y → ¬ X ↔ ¬ Y iff-neg e = map-neg (backward-implication e) , map-neg (forward-implication e) equiv-iff-neg : X ↔ Y → ¬ X ≃ ¬ Y equiv-iff-neg e = equiv-iff' (neg-type-Prop X) (neg-type-Prop Y) (iff-neg e)
Equivalent types have equivalent negations
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} where equiv-neg : X ≃ Y → ¬ X ≃ ¬ Y equiv-neg e = equiv-iff-neg (iff-equiv e)
Negation has no fixed points
no-fixed-points-neg : {l : Level} (A : UU l) → ¬ (A ↔ ¬ A) no-fixed-points-neg A (f , g) = ( λ (h : ¬ A) → h (g h)) (λ (a : A) → f a a) abstract no-fixed-points-neg-Prop : {l : Level} (P : Prop l) → ¬ (type-Prop P ↔ ¬ (type-Prop P)) no-fixed-points-neg-Prop P = no-fixed-points-neg (type-Prop P)
Table of files about propositional logic
The following table gives an overview of basic constructions in propositional logic and related considerations.
External links
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644).