Finitely enumerable subtypes
Content created by Louis Wasserman.
Created on 2025-08-10.
Last modified on 2025-08-10.
module univalent-combinatorics.finitely-enumerable-subtypes where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import univalent-combinatorics.finitely-enumerable-types
Idea
A subtype S
of a type X
is
finitely enumerable¶
if it is
finitely enumerable as a
type.
Definition
module _ {l1 l2 : Level} {X : UU l1} (S : subtype l2 X) where is-finitely-enumerable-prop-subtype : Prop (l1 ⊔ l2) is-finitely-enumerable-prop-subtype = is-finitely-enumerable-prop (type-subtype S) is-finitely-enumerable-subtype : UU (l1 ⊔ l2) is-finitely-enumerable-subtype = is-finitely-enumerable (type-subtype S) finitely-enumerable-subtype : {l1 : Level} (l2 : Level) (X : UU l1) → UU (l1 ⊔ lsuc l2) finitely-enumerable-subtype l2 X = type-subtype (is-finitely-enumerable-prop-subtype {l2 = l2} {X = X}) module _ {l1 l2 : Level} {X : UU l1} (S : finitely-enumerable-subtype l2 X) where subtype-finitely-enumerable-subtype : subtype l2 X subtype-finitely-enumerable-subtype = pr1 S is-finitely-enumerable-subtype-finitely-enumerable-subtype : is-finitely-enumerable-subtype subtype-finitely-enumerable-subtype is-finitely-enumerable-subtype-finitely-enumerable-subtype = pr2 S type-finitely-enumerable-subtype : UU (l1 ⊔ l2) type-finitely-enumerable-subtype = type-subtype subtype-finitely-enumerable-subtype
Recent changes
- 2025-08-10. Louis Wasserman. Finitely enumerable types (#1473).