The metric additive group of rational numbers
Content created by Louis Wasserman.
Created on 2025-11-06.
Last modified on 2025-11-06.
module elementary-number-theory.metric-additive-group-of-rational-numbers where
Imports
open import analysis.metric-abelian-groups open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.metric-space-of-rational-numbers open import metric-spaces.metric-spaces
Idea
Addition on the rational numbers forms a metric abelian group.
Definition
metric-ab-add-ℚ : Metric-Ab lzero lzero metric-ab-add-ℚ = ( abelian-group-add-ℚ , pseudometric-structure-Metric-Space metric-space-ℚ , is-extensional-pseudometric-space-ℚ , is-isometry-neg-ℚ , is-isometry-add-ℚ)
Recent changes
- 2025-11-06. Louis Wasserman. The sum of the reciprocals of the triangular numbers is 2 (#1665).