Left modules over rings
Content created by Louis Wasserman and malarbol.
Created on 2025-05-18.
Last modified on 2025-05-18.
module linear-algebra.left-modules-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.addition-homomorphisms-abelian-groups open import group-theory.endomorphism-rings-abelian-groups open import group-theory.homomorphisms-abelian-groups open import ring-theory.homomorphisms-rings open import ring-theory.opposite-rings open import ring-theory.rings
Idea
A
left module¶
M
over a ring R
consists of an
abelian group M
equipped with an action
R → M → M
such that
r(x+y) = rx + ry
r0 = 0
r(-x) = -(rx)
(r+s)x = rx + sx
0x = 0
(-r)x = -(rx)
(sr)x = s(rx)
1x = x
Equivalently, a left module M
over a ring R
consists of an abelian group M
equipped with a ring homomorphism R → endomorphism-ring-Ab M
.
Definitions
Left modules over rings
left-module-Ring : {l1 : Level} (l2 : Level) (R : Ring l1) → UU (l1 ⊔ lsuc l2) left-module-Ring l2 R = Σ (Ab l2) (λ A → hom-Ring R (endomorphism-ring-Ab A)) module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where ab-left-module-Ring : Ab l2 ab-left-module-Ring = pr1 M set-left-module-Ring : Set l2 set-left-module-Ring = set-Ab ab-left-module-Ring type-left-module-Ring : UU l2 type-left-module-Ring = type-Ab ab-left-module-Ring add-left-module-Ring : (x y : type-left-module-Ring) → type-left-module-Ring add-left-module-Ring = add-Ab ab-left-module-Ring zero-left-module-Ring : type-left-module-Ring zero-left-module-Ring = zero-Ab ab-left-module-Ring is-zero-prop-left-module-Ring : type-left-module-Ring → Prop l2 is-zero-prop-left-module-Ring = is-zero-prop-Ab ab-left-module-Ring is-zero-left-module-Ring : type-left-module-Ring → UU l2 is-zero-left-module-Ring = is-zero-Ab ab-left-module-Ring neg-left-module-Ring : type-left-module-Ring → type-left-module-Ring neg-left-module-Ring = neg-Ab ab-left-module-Ring endomorphism-ring-ab-left-module-Ring : Ring l2 endomorphism-ring-ab-left-module-Ring = endomorphism-ring-Ab ab-left-module-Ring mul-hom-left-module-Ring : hom-Ring R endomorphism-ring-ab-left-module-Ring mul-hom-left-module-Ring = pr2 M mul-left-module-Ring : type-Ring R → type-left-module-Ring → type-left-module-Ring mul-left-module-Ring x = map-hom-Ab ( ab-left-module-Ring) ( ab-left-module-Ring) ( map-hom-Ring R ( endomorphism-ring-Ab ab-left-module-Ring) ( mul-hom-left-module-Ring) ( x))
Properties
Associativity of addition
associative-add-left-module-Ring : (x y z : type-left-module-Ring) → Id ( add-left-module-Ring (add-left-module-Ring x y) z) ( add-left-module-Ring x (add-left-module-Ring y z)) associative-add-left-module-Ring = associative-add-Ab ab-left-module-Ring
Unit laws for addition
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where left-unit-law-add-left-module-Ring : (x : type-left-module-Ring R M) → Id (add-left-module-Ring R M (zero-left-module-Ring R M) x) x left-unit-law-add-left-module-Ring = left-unit-law-add-Ab (ab-left-module-Ring R M) right-unit-law-add-left-module-Ring : (x : type-left-module-Ring R M) → Id (add-left-module-Ring R M x (zero-left-module-Ring R M)) x right-unit-law-add-left-module-Ring = right-unit-law-add-Ab (ab-left-module-Ring R M)
Inverse laws for addition
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where left-inverse-law-add-left-module-Ring : (x : type-left-module-Ring R M) → Id ( add-left-module-Ring R M (neg-left-module-Ring R M x) x) ( zero-left-module-Ring R M) left-inverse-law-add-left-module-Ring = left-inverse-law-add-Ab (ab-left-module-Ring R M) right-inverse-law-add-left-module-Ring : (x : type-left-module-Ring R M) → Id ( add-left-module-Ring R M x (neg-left-module-Ring R M x)) ( zero-left-module-Ring R M) right-inverse-law-add-left-module-Ring = right-inverse-law-add-Ab (ab-left-module-Ring R M)
Unit laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where abstract left-unit-law-mul-left-module-Ring : (x : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M (one-Ring R) x) x left-unit-law-mul-left-module-Ring = htpy-eq-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( one-Ring R)) ( id-hom-Ab (ab-left-module-Ring R M)) ( preserves-one-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M))
Distributive law for multiplication and addition
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where abstract left-distributive-mul-add-left-module-Ring : (r : type-Ring R) (x y : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M r (add-left-module-Ring R M x y)) ( add-left-module-Ring R M ( mul-left-module-Ring R M r x) ( mul-left-module-Ring R M r y)) left-distributive-mul-add-left-module-Ring r x y = preserves-add-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( r)) right-distributive-mul-add-left-module-Ring : (r s : type-Ring R) (x : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M (add-Ring R r s) x) ( add-left-module-Ring R M ( mul-left-module-Ring R M r x) ( mul-left-module-Ring R M s x)) right-distributive-mul-add-left-module-Ring r s = htpy-eq-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( add-Ring R r s)) ( add-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( r)) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( s))) ( preserves-add-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M))
Associativity laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where abstract associative-mul-left-module-Ring : (r s : type-Ring R) (x : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M (mul-Ring R r s) x) ( mul-left-module-Ring R M r (mul-left-module-Ring R M s x)) associative-mul-left-module-Ring r s = htpy-eq-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( mul-Ring R r s)) ( comp-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( r)) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( s))) ( preserves-mul-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M))
Zero laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where abstract left-zero-law-mul-left-module-Ring : (x : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M (zero-Ring R) x) (zero-left-module-Ring R M) left-zero-law-mul-left-module-Ring = htpy-eq-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( zero-Ring R)) ( zero-hom-Ab (ab-left-module-Ring R M) (ab-left-module-Ring R M)) ( preserves-zero-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M)) right-zero-law-mul-left-module-Ring : (r : type-Ring R) → Id ( mul-left-module-Ring R M r (zero-left-module-Ring R M)) ( zero-left-module-Ring R M) right-zero-law-mul-left-module-Ring r = preserves-zero-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( r))
Negative laws for multiplication
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where abstract left-negative-law-mul-left-module-Ring : (r : type-Ring R) (x : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M (neg-Ring R r) x) ( neg-left-module-Ring R M (mul-left-module-Ring R M r x)) left-negative-law-mul-left-module-Ring r = htpy-eq-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( neg-Ring R r)) ( neg-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( r))) ( preserves-neg-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M)) right-negative-law-mul-left-module-Ring : (r : type-Ring R) (x : type-left-module-Ring R M) → Id ( mul-left-module-Ring R M r (neg-left-module-Ring R M x)) ( neg-left-module-Ring R M (mul-left-module-Ring R M r x)) right-negative-law-mul-left-module-Ring r x = preserves-negatives-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R M) ( map-hom-Ring R ( endomorphism-ring-ab-left-module-Ring R M) ( mul-hom-left-module-Ring R M) ( r))
Multiplying by the negation of the one of the ring is negation
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where abstract mul-neg-one-left-module-Ring : (x : type-left-module-Ring R M) → mul-left-module-Ring R M (neg-Ring R (one-Ring R)) x = neg-left-module-Ring R M x mul-neg-one-left-module-Ring x = left-negative-law-mul-left-module-Ring R M _ _ ∙ ap (neg-left-module-Ring R M) (left-unit-law-mul-left-module-Ring R M x)
External links
- <a href=“https://www.wikidata.org/entity/“Q120721996”“>Left module at Wikidata
Recent changes
- 2025-05-18. Louis Wasserman and malarbol. Linear maps over modules (#1395).