Decidable maps

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2022-01-27.
Last modified on 2025-01-07.

module foundation.decidable-maps where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-morphisms-arrows
open import foundation.coproduct-types
open import foundation.decidable-equality
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-coproduct-types
open import foundation.identity-types
open import foundation.retracts-of-maps
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.empty-types
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.injective-maps
open import foundation-core.retractions
open import foundation-core.sections

Idea

A map is said to be decidable if its fibers are decidable types.

Definition

The structure on a map of decidability

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  is-decidable-map : (A  B)  UU (l1  l2)
  is-decidable-map f = (y : B)  is-decidable (fiber f y)

The type of decidable maps

infix 5 _→ᵈ_

_→ᵈ_ : {l1 l2 : Level} (A : UU l1) (B : UU l2)  UU (l1  l2)
A →ᵈ B = Σ (A  B) (is-decidable-map)

decidable-map : {l1 l2 : Level} (A : UU l1) (B : UU l2)  UU (l1  l2)
decidable-map = _→ᵈ_

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A →ᵈ B)
  where

  map-decidable-map : A  B
  map-decidable-map = pr1 f

  is-decidable-decidable-map : is-decidable-map map-decidable-map
  is-decidable-decidable-map = pr2 f

Properties

Decidable maps are closed under homotopy

abstract
  is-decidable-map-htpy :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A  B} 
    f ~ g  is-decidable-map g  is-decidable-map f
  is-decidable-map-htpy H K b =
    is-decidable-equiv
      ( equiv-tot  a  equiv-concat (inv (H a)) b))
      ( K b)

Composition of decidable maps

The composite g ∘ f of two decidable maps is decidable if g is injective.

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
  {g : B  C} {f : A  B}
  where

  abstract
    is-decidable-map-comp :
      is-injective g 
      is-decidable-map g 
      is-decidable-map f 
      is-decidable-map (g  f)
    is-decidable-map-comp H G F x =
      rec-coproduct
        ( λ u 
          is-decidable-iff
            ( λ v  (pr1 v) , ap g (pr2 v)  pr2 u)
            ( λ w  pr1 w , H (pr2 w  inv (pr2 u)))
            ( F (pr1 u)))
        ( λ α  inr  t  α (f (pr1 t) , pr2 t)))
        ( G x)

Left cancellation for decidable maps

If a composite g ∘ f is decidable and g is injective then f is decidable.

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : A  B} {g : B  C}
  where

  abstract
    is-decidable-map-right-factor' :
      is-decidable-map (g  f)  is-injective g  is-decidable-map f
    is-decidable-map-right-factor' GF G y =
      rec-coproduct
        ( λ q  inl (pr1 q , G (pr2 q)))
        ( λ q  inr  x  q ((pr1 x) , ap g (pr2 x))))
        ( GF (g y))

Retracts into types with decidable equality are decidable

is-decidable-map-retraction :
  {l1 l2 : Level} {A : UU l1} {B : UU l2}  has-decidable-equality B 
  (i : A  B)  retraction i  is-decidable-map i
is-decidable-map-retraction d i (r , R) b =
  is-decidable-iff
    ( λ (p : i (r b)  b)  r b , p)
    ( λ t  ap (i  r) (inv (pr2 t))  ap i (R (pr1 t))  pr2 t)
    ( d (i (r b)) b)

Maps with sections are decidable

is-decidable-map-section :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} 
  (i : A  B)  section i  is-decidable-map i
is-decidable-map-section i (s , S) b = inl (s b , S b)

Any map out of the empty type is decidable

abstract
  is-decidable-map-ex-falso :
    {l : Level} {X : UU l}  is-decidable-map (ex-falso {l} {X})
  is-decidable-map-ex-falso x = inr pr1

The identity map is decidable

abstract
  is-decidable-map-id :
    {l : Level} {X : UU l}  is-decidable-map (id {l} {X})
  is-decidable-map-id y = inl (y , refl)

Equivalences are decidable maps

abstract
  is-decidable-map-is-equiv :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A  B} 
    is-equiv f  is-decidable-map f
  is-decidable-map-is-equiv H x = inl (center (is-contr-map-is-equiv H x))

The map on total spaces induced by a family of decidable maps is decidable

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : A  UU l3}
  where

  is-decidable-map-tot :
    {f : (x : A)  B x  C x} 
    ((x : A)  is-decidable-map (f x))  is-decidable-map (tot f)
  is-decidable-map-tot {f} H x =
    is-decidable-equiv (compute-fiber-tot f x) (H (pr1 x) (pr2 x))

The map on total spaces induced by a decidable map on the base is decidable

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B  UU l3)
  where

  is-decidable-map-Σ-map-base :
    {f : A  B}  is-decidable-map f  is-decidable-map (map-Σ-map-base f C)
  is-decidable-map-Σ-map-base {f} H x =
    is-decidable-equiv' (compute-fiber-map-Σ-map-base f C x) (H (pr1 x))

Products of decidable maps are decidable

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
  where

  is-decidable-map-product :
    {f : A  B} {g : C  D} 
    is-decidable-map f  is-decidable-map g  is-decidable-map (map-product f g)
  is-decidable-map-product {f} {g} F G x =
    is-decidable-equiv
      ( compute-fiber-map-product f g x)
      ( is-decidable-product (F (pr1 x)) (G (pr2 x)))

Coproducts of decidable maps are decidable

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
  where

  is-decidable-map-coproduct :
    {f : A  B} {g : C  D} 
    is-decidable-map f 
    is-decidable-map g 
    is-decidable-map (map-coproduct f g)
  is-decidable-map-coproduct {f} {g} F G (inl x) =
    is-decidable-equiv' (compute-fiber-inl-map-coproduct f g x) (F x)
  is-decidable-map-coproduct {f} {g} F G (inr y) =
    is-decidable-equiv' (compute-fiber-inr-map-coproduct f g y) (G y)

Decidable maps are closed under base change

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
  {f : A  B} {g : C  D}
  where

  is-decidable-map-base-change :
    cartesian-hom-arrow g f  is-decidable-map f  is-decidable-map g
  is-decidable-map-base-change α F d =
    is-decidable-equiv
      ( equiv-fibers-cartesian-hom-arrow g f α d)
      ( F (map-codomain-cartesian-hom-arrow g f α d))

Decidable maps are closed under retracts of maps

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  {f : A  B} {g : X  Y}
  where

  is-decidable-retract-map :
    f retract-of-map g  is-decidable-map g  is-decidable-map f
  is-decidable-retract-map R G x =
    is-decidable-retract-of
      ( retract-fiber-retract-map f g R x)
      ( G (map-codomain-inclusion-retract-map f g R x))

Recent changes