Transposition of pointed span diagrams
Content created by Egbert Rijke.
Created on 2024-03-13.
Last modified on 2024-03-13.
module structured-types.transposition-pointed-span-diagrams where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import structured-types.opposite-pointed-spans open import structured-types.pointed-span-diagrams
Idea
The trasposition¶ of a pointed span diagram
f g
A <----- S -----> B
is the pointed span diagram
g f
B <----- S -----> A.
In other words, the transposition of a pointed span diagram (A , B , s)
is the
pointed span diagram (B , A , opposite-pointed-span s)
where
opposite-pointed-span s
is the
opposite of the
pointed span s
from A
to B
.
Definitions
Transposition of pointed span diagrams
module _ {l1 l2 l3 : Level} (𝒮 : pointed-span-diagram l1 l2 l3) where transposition-pointed-span-diagram : pointed-span-diagram l2 l1 l3 pr1 transposition-pointed-span-diagram = pointed-codomain-pointed-span-diagram 𝒮 pr1 (pr2 transposition-pointed-span-diagram) = pointed-domain-pointed-span-diagram 𝒮 pr2 (pr2 transposition-pointed-span-diagram) = opposite-pointed-span (pointed-span-pointed-span-diagram 𝒮)
Recent changes
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).